Occurrence and reproductive roles of hormones in seminal plasma
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
29046808
PubMed Central
PMC5640966
DOI
10.1186/s12610-017-0062-y
PII: 62
Knihovny.cz E-zdroje
- Klíčová slova
- GC-MS, Hormones, Immunoassay, LC-MS, Reproductive hormones, Seminal fluid, Seminal plasma, Spermatogenesis, Steroids,
- Publikační typ
- časopisecké články MeSH
Only 2-5% of seminal fluid is composed of spermatozoa, while the rest is seminal plasma. The seminal plasma is a rich cocktail of organic and inorganic compounds including hormones, serving as a source of nutrients for sperm development and maturation, protecting them from infection and enabling them to overcome the immunological and chemical environment of the female reproductive tract. In this review, a survey of the hormones found in human seminal plasma, with particular emphasis on reproductive hormones is provided. Their participation in fertilization is discussed including their indispensable role in ovum fertilization. The origin of individual hormones found in seminal plasma is discussed, along with differences in the concentrations in seminal plasma and blood plasma. A part of review is devoted to methods of measurement, emphasising particular instances in which they differ from measurement in blood plasma. These methods include separation techniques, overcoming the matrix effect and current ways for end-point measurement, focusing on so called hyphenated techniques as a combination of chromatographic separation and mass spectrometry. Finally, the informative value of their determination as markers of male fertility disorders (impaired spermatogenesis, abnormal sperm parameters, varicocele) is discussed, along with instances where measuring their levels in seminal plasma is preferable to measurement of levels in blood plasma.
Les spermatozoïdes ne représentent que 2 à 25% du liquide séminal, le reste étant constitué par le plasma séminal. Le plasma séminal est un cocktail de composés organiques et non organiques comprenant des hormones qui font office de source de substances nutritives pour le développement et la maturation des spermatozoïdes, qui les protègent de l’infection et leur permettent de surmonter l’environnement immunologique et chimique de l’appareil reproducteur féminin. La présente revue propose une vue d’ensemble des hormones retrouvées dans le plasma séminal de l’homme, l’accent étant particulièrement mis sur les hormones reproductives. La participation de ces dernières au processus de fécondation est discutée, y compris leur rôle indispensable dans la fécondation de l’ovocyte. L’origine de chacune des hormones retrouvées dans le plasma séminal est décrite, ainsi que les différences de leurs concentrations dans le plasma séminal et dans le plasma sanguin. Une partie de cette revue est dévolue aux méthodes de mesure, en soulignant des exemples particuliers où elles diffèrent des mesures dans le plasma sanguin. Ces méthodes comprennent les techniques de séparation, qui surmontent les effets matriciels et les procédures actuelles de critère de mesure, en se concentrant sur les techniques dites de couplage comme la combinaison de la séparation chromatographique et de la spectrométrie de masse. Enfin, la valeur informative de la détermination de ces hormones en tant que marqueurs des anomalies de la fertilité masculine (spermatogenèse altérée, paramètres spermatiques anormaux, varicocèle) est discutée, ainsi que les situations où la mesure de leurs taux dans le plasma séminal est préférable à celle du plasma sanguin.
Zobrazit více v PubMed
Saad MH, Burka JF. Isolation of leukotriene C4 from human seminal fluid. Prostaglandins. 1983;26(6):943–954. doi: 10.1016/0090-6980(83)90156-9. PubMed DOI
Fraczek M, Kurpisz M. Cytokines in the male reproductive tract and their role in infertility disorders. J Reprod Immunol. 2015;108:98–104. doi: 10.1016/j.jri.2015.02.001. PubMed DOI
Gruschwitz MS, Brezinschek R, Brezinschek HP. Cytokine levels in the seminal plasma of infertile males. J Androl. 1996;17(2):158–163. PubMed
Brotherton J. Cortisol and transcortin in human seminal plasma and amniotic fluid as estimated by modern specific assays. Andrologia. 1990;22(3):197–204. doi: 10.1111/j.1439-0272.1990.tb01966.x. PubMed DOI
Hampl R, Kubatova J, Sobotka V, Heracek J. Steroids in semen, their role in spermatogenesis, and the possible impact of endocrine disruptors. Horm Mol Biol Clin Investig. 2013;13(1):1–5. doi: 10.1515/hmbci-2013-0003. PubMed DOI
Luconi M, Francavilla F, Porazzi I, Macerola B, Forti G, Baldi E. Human spermatozoa as a model for studying membrane receptors mediating rapid nongenomic effects of progesterone and estrogens. Steroids. 2004;69(8–9):553–559. doi: 10.1016/j.steroids.2004.05.013. PubMed DOI
Modi DN, Shah C, Puri CP. Non-genomic membrane progesterone receptors on human spermatozoa. Soc Reprod Fertil Suppl. 2007;63:515–529. PubMed
Cross NL. Human seminal plasma prevents sperm from becoming acrosomally responsive to the agonist, progesterone: cholesterol is the major inhibitor. Biol Reprod. 1996;54(1):138–145. doi: 10.1095/biolreprod54.1.138. PubMed DOI
Zalata A, El-Mogy M, Abdel-Khabir A, El-Bayoumy Y, El-Baz M, Mostafa T. Seminal androgens, oestradiol and progesterone in oligoasthenoteratozoospermic men with varicocele. Andrologia. 2014;46(7):761–765. doi: 10.1111/and.12145. PubMed DOI
Vigil P, Barrientos VM, Vargas GG, Machuca DA, Cortes ME. Assessment of the effect of testosterone on the acrosome reaction of human spermatozoa. Andrologia. 2012;44(Suppl 1):627–633. doi: 10.1111/j.1439-0272.2011.01241.x. PubMed DOI
Vigil P, Toro A, Godoy A. Physiological action of oestradiol on the acrosome reaction in human spermatozoa. Andrologia. 2008;40(3):146–151. doi: 10.1111/j.1439-0272.2007.00814.x. PubMed DOI
Nacharaju VL, Muneyyirci-Delale O, Khan N. Presence of 11 beta-hydroxysteroid dehydrogenase in human semen: evidence of correlation with semen characteristics. Steroids. 1997;62(3):311–314. doi: 10.1016/S0039-128X(96)00225-5. PubMed DOI
Faienza MF, Giordani L, Delvecchio M, Cavallo L. Clinical, endocrine, and molecular findings in 17beta-hydroxysteroid dehydrogenase type 3 deficiency. J Endocrinol Investig. 2008;31(1):85–91. doi: 10.1007/BF03345572. PubMed DOI
Hampl R, Pohanka M, Hill M, Starka L. The content of four immunomodulatory steroids and major androgens in human semen. J Steroid Biochem Mol Biol. 2003;84(2–3):307–316. doi: 10.1016/S0960-0760(03)00044-X. PubMed DOI
Hert J, Hill M, Hampl R. Gas chromatographic-mass spectrometric identification of 16alpha-hydroxy-dehydroepiandrosterone in human seminal plasma. Steroids. 2004;69(11–12):773–777. doi: 10.1016/j.steroids.2004.05.017. PubMed DOI
Leung PS, Sernia C. The renin-angiotensin system and male reproduction: new functions for old hormones. J Mol Endocrinol. 2003;30(3):263–270. doi: 10.1677/jme.0.0300263. PubMed DOI
Liang H, Miao M, Chen J, Chen K, Wu B, Dai Q, et al. The association between calcium, magnesium, and ratio of calcium/magnesium in seminal plasma and sperm quality. Biol Trace Elem Res. 2016;174(1):1–7. doi: 10.1007/s12011-016-0682-7. PubMed DOI
Baron L, Fara K, Zapata-Carmona H, Zuniga L, Kong M, Signorelli J, et al. Participation of protein kinases and phosphatases in the progesterone-induced acrosome reaction and calcium influx in human spermatozoa. Andrology. 2016;4(6):1073–1083. doi: 10.1111/andr.12234. PubMed DOI
de Angelis C, Galdiero M, Pivonello C, Garifalos F, Menafra D, Cariati F, et al. The role of vitamin D in male fertility: a focus on the testis. Rev Endocr Metab Disord. 2017;18(3):285–305. doi: 10.1007/s11154-017-9425-0. PubMed DOI
Blomberg JM. Vitamin D and male reproduction. Nat Rev Endocrinol. 2014;10(3):175–186. doi: 10.1038/nrendo.2013.262. PubMed DOI
Blomberg Jensen M, Dissing S. Non-genomic effects of vitamin D in human spermatozoa. Steroids. 2012;77(10):903–909. doi: 10.1016/j.steroids.2012.02.020. PubMed DOI
Zanatta AP, Brouard V, Gautier C, Goncalves R, Bouraima-Lelong H, Mena Barreto Silva FR, et al. Interactions between oestrogen and 1alpha,25(OH)2-vitamin D3 signalling and their roles in spermatogenesis and spermatozoa functions. Basic Clin Androl. 2017;27:10. doi: 10.1186/s12610-017-0053-z. PubMed DOI PMC
Anagnostis P, Karras S, Goulis DG. Vitamin D in human reproduction: a narrative review. Int J Clin Pract. 2013;67(3):225–235. doi: 10.1111/ijcp.12031. PubMed DOI
MacKenzie PI, Rogers A, Elliot DJ, Chau N, Hulin JA, Miners JO, et al. The novel UDP glycosyltransferase 3A2: cloning, catalytic properties, and tissue distribution. Mol Pharmacol. 2011;79(3):472–478. doi: 10.1124/mol.110.069336. PubMed DOI
Song WC, Qian Y, Sun X, Negishi M. Cellular localization and regulation of expression of testicular estrogen sulfotransferase. Endocrinology. 1997;138(11):5006–5012. doi: 10.1210/endo.138.11.5512. PubMed DOI
Thackare H, Nicholson HD, Whittington K. Oxytocin--its role in male reproduction and new potential therapeutic uses. Hum Reprod Update. 2006;12(4):437–448. doi: 10.1093/humupd/dmk002. PubMed DOI
Schulster M, Bernie AM, Ramasamy R. The role of estradiol in male reproductive function. Asian J Androl. 2016;18(3):435–440. doi: 10.4103/1008-682X.173932. PubMed DOI PMC
Pelletier G. Expression of steroidogenic enzymes and sex-steroid receptors in human prostate. Best Pract Res Clin Endocrinol Metab. 2008;22(2):223–228. doi: 10.1016/j.beem.2008.02.004. PubMed DOI
Qin X, Liu M, Wang X. New insights into the androgen biotransformation in prostate cancer: a regulatory network among androgen, androgen receptors and UGTs. Pharmacol Res. 2016;106:114–122. doi: 10.1016/j.phrs.2016.02.021. PubMed DOI
Takase Y, Luu-The V, Poisson-Pare D, Labrie F, Pelletier G. Expression of sulfotransferase 1E1 in human prostate as studied by in situ hybridization and immunocytochemistry. Prostate. 2007;67(4):405–409. doi: 10.1002/pros.20525. PubMed DOI
Imperato-McGinley J, Zhu YS. Androgens and male physiology the syndrome of 5alpha-reductase-2 deficiency. Mol Cell Endocrinol. 2002;198(1–2):51–59. doi: 10.1016/S0303-7207(02)00368-4. PubMed DOI
Roberts KD. Sterol sulfates in the epididymis; synthesis and possible function in the reproductive process. J Steroid Biochem. 1987;27(1–3):337–341. doi: 10.1016/0022-4731(87)90325-6. PubMed DOI
Barbier O, Belanger A, Hum DW. Cloning and characterization of a simian UDP-glucuronosyltransferase enzyme UGT2B20, a novel C19 steroid-conjugating protein. Biochem J. 1999;337(Pt 3):567–574. doi: 10.1042/bj3370567. PubMed DOI PMC
Robaire B, Hamzeh M. Androgen action in the epididymis. J Androl. 2011;32(6):592–599. doi: 10.2164/jandrol.111.014266. PubMed DOI
Hampl R, Kubatova J, Heracek J, Sobotka V, Starka L. Hormones and endocrine disruptors in human seminal plasma. Endocr Regul. 2013;47(3):149–158. doi: 10.4149/endo_2013_03_149. PubMed DOI
Zalata A, Hafez T, Verdonck L, Vermeulen L, Comhaire F. Androgens in seminal plasma: markers of the surface epithelium of the male reproductive tract. Int J Androl. 1995;18(5):271–277. PubMed
Mruk DD, Cheng CY. The mammalian blood-testis barrier: its biology and regulation. Endocr Rev. 2015;36(5):564–591. doi: 10.1210/er.2014-1101. PubMed DOI PMC
Cheng CY, Mruk DD. The blood-testis barrier and its implications for male contraception. Pharmacol Rev. 2012;64(1):16–64. doi: 10.1124/pr.110.002790. PubMed DOI PMC
Wilson JD. The critical role of androgens in prostate development. Endocrinol Metab Clin N Am. 2011;40(3):577–590. doi: 10.1016/j.ecl.2011.05.003. PubMed DOI
Zhang Q, Bai Q, Yuan Y, Liu P, Qiao J. Assessment of seminal estradiol and testosterone levels as predictors of human spermatogenesis. J Androl. 2010;31(2):215–220. doi: 10.2164/jandrol.109.007609. PubMed DOI
Asch RH, Fernandez EO, Siler-Khodr TM, Pauerstein CJ. Peptide and steroid hormone concentrations in human seminal plasma. Int J Fertil. 1984;29(1):25–32. PubMed
Garcia Diez LC, Gonzalez Buitrago JM, Corrales JJ, Battaner E, Miralles JM. Hormone levels in serum and seminal plasma of men with different types of azoospermia. J Reprod Fertil. 1983;67(1):209–214. doi: 10.1530/jrf.0.0670209. PubMed DOI
Abbaticchio G, Giorgino R. FSH and LH in human semen: a diagnostic trial for male infertility. Arch Androl. 1983;10(1):85–89. doi: 10.3109/01485018308990176. PubMed DOI
Awad H, Halawa F, Mostafa T, Atta H. Melatonin hormone profile in infertile males. Int J Androl. 2006;29(3):409–413. doi: 10.1111/j.1365-2605.2005.00624.x. PubMed DOI
Smith ML, Luqman WA. Prolactin in seminal fluid. Arch Androl. 1982;9(2):105–113. doi: 10.3109/01485018208990227. PubMed DOI
Segal S, Ron M, Laufer N, Ben-David M. Prolactin in seminal plasma of infertile men. Arch Androl. 1978;1(1):49–52. doi: 10.3109/01485017808988317. PubMed DOI
Merino G, Canales ES, Vadillo ML, Forsbach G, Solis J, Zarate A. Abnormal prolactin levels in serum and seminal plasma in infertile men. Arch Androl. 1980;4(4):353–355. doi: 10.3109/01485018008986981. PubMed DOI
Koskimies AI, Hovatta O, Ranta T, Seppala M. Serum and seminal plasma prolactin levels in oligospermia. Int J Fertil. 1978;23(1):76–78. PubMed
Goverde HJ, Bisseling JG, Wetzels AM, Braat DD, Pesman GJ, Sweep FC, et al. A neuropeptide in human semen: oxytocin. Arch Androl. 1998;41(1):17–22. doi: 10.3109/01485019808988540. PubMed DOI
Isola M, Cossu M. A DEL, Isola R, Massa D, Casti a, et al. oxytocin immunoreactivity in the human urethral (Littre's) glands. J Reprod Dev. 2010;56(1):94–97. doi: 10.1262/jrd.09-063E. PubMed DOI
Mostafa T, Rashed LA, Osman I, Marawan M. Seminal plasma oxytocin and oxidative stress levels in infertile men with varicocele. Andrologia. 2015;47(2):209–213. doi: 10.1111/and.12248. PubMed DOI
Brotherton J. Vasopressin: another pregnancy protein in human seminal plasma. Andrologia. 1990;22(4):305–307. doi: 10.1111/j.1439-0272.1990.tb01988.x. PubMed DOI
Caroppo E, Niederberger C, Iacovazzi PA, Correale M, Palagiano A, D'Amato G. Human chorionic gonadotropin free beta-subunit in the human seminal plasma: a new marker for spermatogenesis? Eur J Obstet Gynecol Reprod Biol. 2003;106(2):165–169. doi: 10.1016/S0301-2115(02)00231-2. PubMed DOI
Saito S, Kumamoto Y, Ito N, Kurohata T. Human chorionic gonadotropin beta-subunit in human semen. Arch Androl. 1988;20(1):87–99. doi: 10.3109/01485018808987057. PubMed DOI
Fallat ME, Siow Y, Belker AM, Boyd JK, Yoffe S, MacLaughlin DT. The presence of mullerian inhibiting substance in human seminal plasma. Hum Reprod. 1996;11(10):2165–2169. doi: 10.1093/oxfordjournals.humrep.a019070. PubMed DOI
Fenichel P, Rey R, Poggioli S, Donzeau M, Chevallier D, Pointis G. Anti-Mullerian hormone as a seminal marker for spermatogenesis in non-obstructive azoospermia. Hum Reprod. 1999;14(8):2020–2024. doi: 10.1093/humrep/14.8.2020. PubMed DOI
Fujisawa M, Yamasaki T, Okada H, Kamidono S. The significance of anti-Mullerian hormone concentration in seminal plasma for spermatogenesis. Hum Reprod. 2002;17(4):968–970. doi: 10.1093/humrep/17.4.968. PubMed DOI
Mostafa T, Amer MK, Abdel-Malak G, Nsser TA, Zohdy W, Ashour S, et al. Seminal plasma anti-Mullerian hormone level correlates with semen parameters but does not predict success of testicular sperm extraction (TESE) Asian J Androl. 2007;9(2):265–270. doi: 10.1111/j.1745-7262.2007.00252.x. PubMed DOI
Duvilla E, Lejeune H, Trombert-Paviot B, Gentil-Perret A, Tostain J, Levy R. Significance of inhibin B and anti-Mullerian hormone in seminal plasma: a preliminary study. Fertil Steril. 2008;89(2):444–448. doi: 10.1016/j.fertnstert.2007.03.032. PubMed DOI
Sinisi AA, Esposito D, Maione L, Quinto MC, Visconti D, De Bellis A, et al. Seminal anti-Mullerian hormone level is a marker of spermatogenic response during long-term gonadotropin therapy in male hypogonadotropic hypogonadism. Hum Reprod. 2008;23(5):1029–1034. doi: 10.1093/humrep/den046. PubMed DOI
Mitchell V, Boitrelle F, Pigny P, Robin G, Marchetti C, Marcelli F, et al. Seminal plasma levels of anti-Mullerian hormone and inhibin B are not predictive of testicular sperm retrieval in nonobstructive azoospermia: a study of 139 men. Fertil Steril. 2010;94(6):2147–2150. doi: 10.1016/j.fertnstert.2009.11.046. PubMed DOI
Nery SF, Vieira MA, Dela Cruz C, Lobach VN, Del Puerto HL, Torres PB, et al. Seminal plasma concentrations of anti-Mullerian hormone and inhibin B predict motile sperm recovery from cryopreserved semen in asthenozoospermic men: a prospective cohort study. Andrology. 2014;2(6):918–923. doi: 10.1111/andr.278. PubMed DOI
Caprio F, De Franciscis P, Trotta C, Ianniello R, Mele D, Colacurci N. Seminal anti-Mullerian hormone levels during recombinant human follicle-stimulating hormone treatment in men with idiopathic infertility undergoing assisted reproduction cycles. Andrology. 2015;3(5):843–847. doi: 10.1111/andr.12065. PubMed DOI
Kucera R, Ulcova-Gallova Z, Windrichova J, Losan P, Topolcan O. Anti-Mullerian hormone in serum and seminal plasma in comparison with other male fertility parameters. Syst Biol Reprod Med. 2016;62(3):223–226. doi: 10.3109/19396368.2016.1161864. PubMed DOI
Luboshitzky R, Shen-Orr Z, Herer P. Seminal plasma melatonin and gonadal steroids concentrations in normal men. Arch Androl. 2002;48(3):225–232. doi: 10.1080/01485010252869324. PubMed DOI
du Plessis SS, Hagenaar K, Lampiao F. The in vitro effects of melatonin on human sperm function and its scavenging activities on NO and ROS. Andrologia. 2010;42(2):112–116. doi: 10.1111/j.1439-0272.2009.00964.x. PubMed DOI
Ortiz A, Espino J, Bejarano I, Lozano GM, Monllor F, Garcia JF, et al. High endogenous melatonin concentrations enhance sperm quality and short-term in vitro exposure to melatonin improves aspects of sperm motility. J Pineal Res. 2011;50(2):132–139. PubMed
Kratz EM, Piwowar A, Zeman M, Stebelova K, Thalhammer T. Decreased melatonin levels and increased levels of advanced oxidation protein products in the seminal plasma are related to male infertility. Reprod Fertil Dev. 2016;28(4):507–515. doi: 10.1071/RD14165. PubMed DOI
Fait G, Vered Y, Yogev L, Gamzu R, Lessing JB, Paz G, et al. High levels of catecholamines in human semen: a preliminary study. Andrologia. 2001;33(6):347–350. doi: 10.1046/j.1439-0272.2001.00461.x. PubMed DOI
Yun AJ, Daniel SM. Sympathetic and T helper (Th)2 bias may ameliorate uterine fibroids, independent of sex steroids. Med Hypotheses. 2005;65(6):1172–1175. doi: 10.1016/j.mehy.2005.03.015. PubMed DOI
Bazar KA, Yun AJ, Lee PY. Immunomodulatory function of seminal catecholamines may be an adaptation for reproduction. Med Hypotheses. 2004;63(1):168–171. doi: 10.1016/j.mehy.2004.02.037. PubMed DOI
Brotherton J. Parathyroid hormone: another pregnancy protein present in human seminal plasma and amniotic fluid. Andrologia. 1991;23(1):57–59. doi: 10.1111/j.1439-0272.1991.tb02499.x. PubMed DOI
Sjoberg HE, Arver S, Bucht E. High concentration of immunoreactive calcitonin of prostatic origin in human semen. Acta Physiol Scand. 1980;110(1):101–102. doi: 10.1111/j.1748-1716.1980.tb06636.x. PubMed DOI
Foresta C, Caretto A, Indino M, Betterle C, Scandellari C. Calcitonin in human seminal plasma and its localization on human spermatozoa. Andrologia. 1986;18(5):470–473. doi: 10.1111/j.1439-0272.1986.tb01811.x. PubMed DOI
Singer R, Bruchis S, Sagiv M, Allalouf D, Levinsky H, Kaufman H. Beta-endorphin and calcitonin in human semen. Arch Androl. 1989;23(1):77–81. doi: 10.3109/01485018908986792. PubMed DOI
Davidson A, Vermesh M, Paulson RJ, Graczykowski JW, Lobo RA. Presence of immunoreactive beta-endorphin and calcitonin in human seminal plasma, and their relation to sperm physiology. Fertil Steril. 1989;51(5):878–880. doi: 10.1016/S0015-0282(16)60684-2. PubMed DOI
Badr O, Imam A, Monieb H, Khalifa A, Al Ahmady O, Abdallah MA. Concentration of calcitonin in seminal plasma of infertile men. Andrologia. 1989;21(5):416–422. doi: 10.1111/j.1439-0272.1989.tb02435.x. PubMed DOI
Shah GV, Noble MJ, Austenfeld M, Weigel J, Deftos LJ, Mebust WK. Presence of calcitonin-like immunoreactivity (iCT) in human prostate gland: evidence for iCT secretion by cultured prostate cells. Prostate. 1992;21(2):87–97. doi: 10.1002/pros.2990210202. PubMed DOI
Fraser LR, Adeoya-Osiguwa SA, Baxendale RW, Gibbons R. Regulation of mammalian sperm capacitation by endogenous molecules. Front Biosci. 2006;11:1636–1645. doi: 10.2741/1910. PubMed DOI
Mungan NA, Mungan G, Basar MM, Baykam M, Atan A. Effect of seminal plasma calcitonin levels on sperm mobility. Arch Androl. 2001;47(2):113–117. doi: 10.1080/014850101316901316. PubMed DOI
Marinoni E, Vellucci O, Letizia C, Sessa M, Moscarini M, Di Iorio R. The level of adrenomedullin immunoreactivity in seminal fluid is higher in oligozoospermic subjects and correlates with semen biochemical parameters. Eur J Obstet Gynecol Reprod Biol. 2007;131(2):169–175. doi: 10.1016/j.ejogrb.2006.06.006. PubMed DOI
Krassas GE, Pontikides N. Male reproductive function in relation with thyroid alterations. Best Pract Res Clin Endocrinol Metab. 2004;18(2):183–195. doi: 10.1016/j.beem.2004.03.003. PubMed DOI
Rajender S, Monica MG, Walter L, Agarwal A. Thyroid, spermatogenesis, and male infertility. Front Biosci (Elite Ed) 2011;3:843–855. PubMed
Robert M, Gagnon C. Semenogelin I: a coagulum forming, multifunctional seminal vesicle protein. Cell Mol Life Sci. 1999;55(6–7):944–960. doi: 10.1007/s000180050346. PubMed DOI PMC
Lundwall A, Bjartell A, Olsson AY, Malm J. Semenogelin I and II, the predominant human seminal plasma proteins, are also expressed in non-genital tissues. Mol Hum Reprod. 2002;8(9):805–810. doi: 10.1093/molehr/8.9.805. PubMed DOI
Lilja H, Oldbring J, Rannevik G, Laurell CB. Seminal vesicle-secreted proteins and their reactions during gelation and liquefaction of human semen. J Clin Invest. 1987;80(2):281–285. doi: 10.1172/JCI113070. PubMed DOI PMC
World Health Organisation. WHO laboratory manual for the examination and processing of human semen. Fifth edition. 2010.
Wang Q, Mesaros C, Blair IA. Ultra-high sensitivity analysis of estrogens for special populations in serum and plasma by liquid chromatography-mass spectrometry: assay considerations and suggested practices. J Steroid Biochem Mol Biol. 2016;162:70–79. doi: 10.1016/j.jsbmb.2016.01.002. PubMed DOI PMC
Novakova L. Challenges in the development of bioanalytical liquid chromatography-mass spectrometry method with emphasis on fast analysis. J Chromatogr A. 2013;1292:25–37. doi: 10.1016/j.chroma.2012.08.087. PubMed DOI
Makin HLJ, Honour JW, Shackleton CH Griffiths WJ. General Methods for the Extraction, Purification, and Measurement of Steroids by Chromatography and Mass Spectrometry, in Steroid Analysis, H.L.J. Makin and D.B. Gower, Editors. Springer.2010:163–282.
Owen LJ, Keevil BG. Supported liquid extraction as an alternative to solid phase extraction for LC-MS/MS aldosterone analysis? Ann Clin Biochem. 2013;50(Pt 5):489–491. doi: 10.1177/0004563213480758. PubMed DOI
Naldi AC, Fayad PB, Prevost M, Sauve S. Analysis of steroid hormones and their conjugated forms in water and urine by on-line solid-phase extraction coupled to liquid chromatography tandem mass spectrometry. Chem Cent J. 2016;10:30. doi: 10.1186/s13065-016-0174-z. PubMed DOI PMC
Kurniawan E, Tamm J, Volkwein U, Schirren C. Unconjugated 5 alpha-androstan-3 alpha, 17 beta-diol and 5 alpha-androstane-3 beta, 17 beta-diol in normal and pathological human seminal plasma. Comparison with testosterone, 5 alpha-dihydrotestosterone and testosterone-glucosiduronate. Andrologia. 1983;15(2):141–150. doi: 10.1111/j.1439-0272.1983.tb00128.x. PubMed DOI
Laudat A, Guechot J, Palluel AM. Seminal androgen concentrations and residual sperm cytoplasm. Clin Chim Acta. 1998;276(1):11–18. doi: 10.1016/S0009-8981(98)00090-4. PubMed DOI
Adamopoulos DA, Lawrence DM, Swyer GI. Determinantion of testosterone concentration in semen of men with normal or subnormal sperm counts and after vasectomy. Acta Eur Fertil. 1976;7(3):219–225. PubMed
Facchinetti F, Comitini G, Genazzani A, Bakalakis C, Genazzani AR, Loche S. Seminal fluid androgen levels in infertile patients. Int J Fertil. 1987;32(2):157–161. PubMed
Santiemma V, Rosati P, Fazzi V, Bolelli GF, Guerzoni C, Fabbrini A. Seminal estrone, estrone sulfate, and estradiol-17 beta levels in fertile and infertile males. Arch Androl. 1991;26(2):129–134. doi: 10.3109/01485019108987635. PubMed DOI
Schwartz JI, Tanaka WK, Wang DZ, Ebel DL, Geissler LA, Dallob A, et al. MK-386, an inhibitor of 5alpha-reductase type 1, reduces dihydrotestosterone concentrations in serum and sebum without affecting dihydrotestosterone concentrations in semen. J Clin Endocrinol Metab. 1997;82(5):1373–1377. PubMed
Wilson ID, Brinkman UA. Hyphenation and hypernation the practice and prospects of multiple hyphenation. J Chromatogr A. 2003;1000(1–2):325–356. doi: 10.1016/S0021-9673(03)00504-1. PubMed DOI
Vitku J, Chlupacova T, Sosvorova L, Hampl R, Hill M, Heracek J, et al. Development and validation of LC–MS/MS method for quantification of bisphenol a and estrogens in human plasma and seminal fluid PubMed
Reiffsteck A, Dehennin L, Scholler R. Estrogens in seminal plasma of human and animal species: identification and quantitative estimation by gas chromatography-mass spectrometry associated with stable isotope dilution. J Steroid Biochem. 1982;17(5):567–572. doi: 10.1016/0022-4731(82)90017-6. PubMed DOI
Vitku J, Sosvorova L, Chlupacova T, Hampl R, Hill M, Sobotka V, et al. Differences in bisphenol a and estrogen levels in the plasma and seminal plasma of men with different degrees of infertility. Physiol Res. 2015;64(Suppl. 2):S303–S311. PubMed
Vitku J, Heracek J, Sosvorova L, Hampl R, Chlupacova T, Hill M, et al. Associations of bisphenol A and polychlorinated biphenyls with spermatogenesis and steroidogenesis in two biological fluids from men attending an infertility clinic PubMed
Higashi T, Ogawa S. Chemical derivatization for enhancing sensitivity during LC/ESI-MS/MS quantification of steroids in biological samples: a review. J Steroid Biochem Mol Biol. 2016;162:57–69. doi: 10.1016/j.jsbmb.2015.10.003. PubMed DOI
Wang HX, Wang B, Zhou Y, Jiang QW. Rapid and sensitive analysis of phthalate metabolites, bisphenol a, and endogenous steroid hormones in human urine by mixed-mode solid-phase extraction, dansylation, and ultra-performance liquid chromatography coupled with triple quadrupole mass spectrometry. Anal Bioanal Chem. 2013;405(12):4313–4319. doi: 10.1007/s00216-013-6779-3. PubMed DOI
Zhao Y, Boyd JM, Sawyer MB, Li XF. Liquid chromatography tandem mass spectrometry determination of free and conjugated estrogens in breast cancer patients before and after exemestane treatment. Anal Chim Acta. 2014;806:172–179. doi: 10.1016/j.aca.2013.11.014. PubMed DOI
Higashi T, Nishio T, Hayashi N, Shimada K. Alternative procedure for charged derivatization to enhance detection responses of steroids in electrospray ionization-MS. Chem Pharm Bull (Tokyo) 2007;55(4):662–665. doi: 10.1248/cpb.55.662. PubMed DOI
Sosvorova L, Vitku J, Chlupacova T, Mohapl M, Hampl R. Determination of seven selected neuro- and immunomodulatory steroids in human cerebrospinal fluid and plasma using LC-MS/MS. Steroids. 2015;98:1–8. doi: 10.1016/j.steroids.2015.01.019. PubMed DOI
Chang YC, Li CM, Li LA, Jong SB, Liao PC, Chang LW. Quantitative measurement of male steroid hormones using automated on-line solid phase extraction-liquid chromatography-tandem mass spectrometry and comparison with radioimmunoassay. Analyst. 2003;128(4):363–368. doi: 10.1039/b210111b. PubMed DOI
French D. Advances in bioanalytical techniques to measure steroid hormones in serum. Bioanalysis. 2016;8(11):1203–1219. doi: 10.4155/bio-2015-0025. PubMed DOI
Duskova M, Sosvorova L, Vitku J, Jandikova H, Racz B, Chlupacova T, et al. Changes in the concentrations of corticoid metabolites--the effect of stress, diet and analytical method. Prague Med Rep. 2015;116(4):268–278. doi: 10.14712/23362936.2015.66. PubMed DOI
Krasowski MD, Drees D, Morris CS, Maakestad J, Blau JL, Ekins S. Cross-reactivity of steroid hormone immunoassays: clinical significance and two-dimensional molecular similarity prediction. BMC Clin Pathol. 2014;14:33. doi: 10.1186/1472-6890-14-33. PubMed DOI PMC
Lu JC, Jing J, Yao Q, Fan K, Wang GH, Feng RX, et al. Relationship between lipids levels of serum and seminal plasma and semen parameters in 631 Chinese subfertile men. PLoS One. 2016;11(1):e0146304. doi: 10.1371/journal.pone.0146304. PubMed DOI PMC
Drabovich AP, Saraon P, Jarvi K, Diamandis EP. Seminal plasma as a diagnostic fluid for male reproductive system disorders. Nat Rev Urol. 2014;11(5):278–288. doi: 10.1038/nrurol.2014.74. PubMed DOI
Chen JT, Hortin GL. Interferences with semen detection by an immunoassay for a seminal vesicle-specific antigen. J Forensic Sci. 2000;45(1):234–235. doi: 10.1520/JFS14670J. PubMed DOI
Bujan L, Mieusset R, Audran F, Lumbroso S, Sultan C. Increased oestradiol level in seminal plasma in infertile men. Hum Reprod. 1993;8(1):74–77. doi: 10.1093/oxfordjournals.humrep.a137878. PubMed DOI
Luboshitzky R, Kaplan-Zverling M, Shen-Orr Z, Nave R, Herer P. Seminal plasma androgen/oestrogen balance in infertile men. Int J Androl. 2002;25(6):345–351. doi: 10.1046/j.1365-2605.2002.00376.x. PubMed DOI
Taylor PJ. Matrix effects: the Achilles heel of quantitative high-performance liquid chromatography-electrospray-tandem mass spectrometry. Clin Biochem. 2005;38(4):328–334. doi: 10.1016/j.clinbiochem.2004.11.007. PubMed DOI
Stokvis E, Rosing H, Beijnen JH. Stable isotopically labeled internal standards in quantitative bioanalysis using liquid chromatography/mass spectrometry: necessity or not? Rapid Commun Mass Spectrom. 2005;19(3):401–407. doi: 10.1002/rcm.1790. PubMed DOI
Bourcigaux N, Christin-Maitre S. Hormonal evaluation in infertile men. Gynecol Obstet Fertil. 2008;36(5):551–556. doi: 10.1016/j.gyobfe.2008.03.006. PubMed DOI
Sussman EM, Chudnovsky A, Niederberger CS. Hormonal evaluation of the infertile male: has it evolved? Urol Clin North Am. 2008;35(2):147–155. doi: 10.1016/j.ucl.2008.01.010. PubMed DOI
Chew PC, Loganath A, Peh KL, Chow WP, Gunasegaram R, Ratnam SS. Concentrations of intracellular sex steroids in human spermatozoa. Arch Androl. 1993;30(3):165–170. doi: 10.3109/01485019308987752. PubMed DOI
Rolland AD, Lavigne R, Dauly C, Calvel P, Kervarrec C, Freour T, et al. Identification of genital tract markers in the human seminal plasma using an integrative genomics approach. Hum Reprod. 2013;28(1):199–209. doi: 10.1093/humrep/des360. PubMed DOI
Drabovich AP, Dimitromanolakis A, Saraon P, Soosaipillai A, Batruch I, Mullen B, et al. Differential diagnosis of azoospermia with proteomic biomarkers ECM1 and TEX101 quantified in seminal plasma. Sci Transl Med. 2013;5(212):212ra160. doi: 10.1126/scitranslmed.3006260. PubMed DOI
Saraswat M, Joenvaara S, Tomar AK, Singh S, Yadav S, Renkonen R. N-Glycoproteomics of human seminal plasma glycoproteins. J Proteome Res. 2016;15(3):991–1001. doi: 10.1021/acs.jproteome.5b01069. PubMed DOI
Katnik-Prastowska I, Kratz EM, Faundez R, Chelmonska-Soyta A. Lower expression of the alpha2,3-sialylated fibronectin glycoform and appearance of the asialo-fibronectin glycoform are associated with high concentrations of fibronectin in human seminal plasma with abnormal semen parameters. Clin Chem Lab Med. 2006;44(9):1119–1125. doi: 10.1515/CCLM.2006.193. PubMed DOI
Kratz EM, Faundez R, Katnik-Prastowska I. Fucose and sialic acid expressions in human seminal fibronectin and alpha{1} -acid glycoprotein associated with leukocytospermia of infertile men. Dis Markers. 2011;31(5):317–325. doi: 10.1155/2011/914710. PubMed DOI PMC
Feuring M, Bertsch T, Tran BM, Rossol-Haseroth K, Losel R, Tillmann HC, et al. Seminal plasma hormone concentration after oral application of progesterone. Int J Clin Pharmacol Ther. 2002;40(2):47–52. doi: 10.5414/CPP40047. PubMed DOI