Synthesis and Pharmacological Evaluation of Selective Histone Deacetylase 6 Inhibitors in Melanoma Models
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
R01 NS079183
NINDS NIH HHS - United States
PubMed
29057046
PubMed Central
PMC5641951
DOI
10.1021/acsmedchemlett.7b00223
Knihovny.cz E-zdroje
- Klíčová slova
- HDAC6 inhibitors, immune response, inflammatory response, melanoma, nexturastat A,
- Publikační typ
- časopisecké články MeSH
Only a handful of therapies offer significant improvement in the overall survival in cases of melanoma, a cancer whose incidence has continued to rise in the past 30 years. In our effort to identify potent and isoform-selective histone deacetylase (HDAC) inhibitors as a therapeutic approach to melanoma, a series of new HDAC6 inhibitors based on the nexturastat A scaffold were prepared. The new analogues 4d, 4e, and 7b bearing added hydrophilic substituents, so as to establish additional hydrogen bonding on the rim of the HDAC6 catalytic pocket, exhibit improved potency against HDAC6 and retain selectivity over HDAC1. Compound 4d exhibits antiproliferative effects on several types of melanoma and lymphoma cells. Further studies indicates that 4d selectively increases acetylated tubulin levels in vitro and elicits an immune response through down-regulating cytokine IL-10. A preliminary in vivo efficacy study indicates that 4d possesses improved capability to inhibit melanoma tumor growth and that this effect is based on the regulation of inflammatory and immune responses.
Zobrazit více v PubMed
Lens M. B.; Dawes M. Global perspectives of contemporary epidemiological trends of cutaneous malignant melanoma. Br. J. Dermatol. 2004, 150, 179–185. 10.1111/j.1365-2133.2004.05708.x. PubMed DOI
https://www.cancer.gov/about-cancer/treatment/drugs/fda-dabrafenib (accessed July 2017) and https://www.cancer.gov/about-cancer/treatment/drugs/fda-trametinib (accessed July 2017).
Postow M. A.; Callahan M. K.; Wolchok J. D. Immune Checkpoint Blockade in Cancer Therapy. J. Clin. Oncol. 2015, 33, 1974–1982. 10.1200/JCO.2014.59.4358. PubMed DOI PMC
O’Donnell J. S.; Smyth M. J.; Teng M. W. L. Acquired Resistance to Anti-PD1 Therapy: Checkmate to Checkpoint Blockade?. Genome Med. 2016, 8, 111.10.1186/s13073-016-0365-1. PubMed DOI PMC
Liu J.; Gu J.; Feng Z.; Yang Y.; Zhu N.; Lu W.; Qi F. Both HDAC5 and HDAC6 Are Required for the Proliferation and Metastasis of Melanoma Cells. J. Transl. Med. 2016, 14, 7.10.1186/s12967-015-0753-0. PubMed DOI PMC
Hornig E.; Heppt M. V.; Graf S. A.; Ruzicka T.; Berking C. Inhibition of histone deacetylases in melanoma - a perspective from bench to bedside. Exp. Dermatol. 2016, 25, 831–838. 10.1111/exd.13089. PubMed DOI
Woan K. V.; Lienlaf M.; Perez-Villaroel P.; Lee C.; Cheng F.; Knox T.; Woods D. M.; Barrios K.; Powers J.; Sahakian E.; Wang H. W.; Canales J.; Marante D.; Smalley K. S. M.; Bergman J.; Seto E.; Kozikowski A.; Pinilla-Ibarz J.; Sarnaik A.; Celis E.; Weber J.; Sotomayor E. M.; Villagra A. Targeting Histone Deacetylase 6 Mediates a Dual Anti-Melanoma Effect: Enhanced Antitumor Immunity and Impaired Cell Proliferation. Mol. Oncol. 2015, 9, 1447–1457. 10.1016/j.molonc.2015.04.002. PubMed DOI PMC
Roche J.; Bertrand P. Inside HDACs with More Selective HDAC Inhibitors. Eur. J. Med. Chem. 2016, 121, 451–483. 10.1016/j.ejmech.2016.05.047. PubMed DOI
Xu W. S.; Parmigiani R. B.; Marks P. Histone Deacetylase Inhibitors: Molecular Mechanisms of Action. Oncogene 2007, 26, 5541–5552. 10.1038/sj.onc.1210620. PubMed DOI
Walkinshaw D. R.; Tahmasebi S.; Bertos N. R.; Yang X. J. Histone Deacetylases as Transducers and Targets of Nuclear Signaling. J. Cell. Biochem. 2008, 104, 1541–1552. 10.1002/jcb.21746. PubMed DOI
Lahm A.; Paolini C.; Pallaoro M.; Nardi M. C.; Jones P.; Neddermann P.; Sambucini S.; Bottomley M. J.; Lo Surdo P.; Carfí A.; Koch U.; De Francesco R.; Steinkühler C.; Gallinari P. Unraveling the Hidden Catalytic Activity of Vertebrate Class IIa Histone Deacetylases. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 17335–17340. 10.1073/pnas.0706487104. PubMed DOI PMC
Haberland M.; Montgomery R. L.; Olson E. N. The Many Roles of Histone Deacetylases in Development and Physiology: Implications for Disease and Therapy. Nat. Rev. Genet. 2009, 10, 32–42. 10.1038/nrg2485. PubMed DOI PMC
Imai Y.; Maru Y.; Tanaka J. Action mechanisms of histone deacetylase inhibitors in the treatment of hematological malignancies. Cancer Sci. 2016, 107, 1543–1549. 10.1111/cas.13062. PubMed DOI PMC
Bergman J. A.; Woan K.; Perez-Villarroel P.; Villagra A.; Sotomayor E. M.; Kozikowski A. P. Selective Histone Deacetylase 6 Inhibitors Bearing Substituted Urea Linkers Inhibit Melanoma Cell Growth. J. Med. Chem. 2012, 55, 9891–9899. 10.1021/jm301098e. PubMed DOI PMC
Lienlaf M.; Perez-Villarroel P.; Knox T.; Pabon M.; Sahakian E.; Powers J.; Woan K. V.; Lee C.; Cheng F.; Deng S.; Smalley K. S. M.; Montecino M.; Kozikowski A.; Pinilla-Ibarz J.; Sarnaik A.; Seto E.; Weber J.; Sotomayor E. M.; Villagra A. Essential Role of HDAC6 in the Regulation of PD-L1 in Melanoma. Mol. Oncol. 2016, 10, 735–750. 10.1016/j.molonc.2015.12.012. PubMed DOI PMC
Kim S.; Oh C. H.; Ko J. S.; Ahn K. H.; Kim Y. J. Zinc-Modified Cyanoborohydride as a Selective Reducing Agent. J. Org. Chem. 1985, 50, 1927–1932. 10.1021/jo00211a028. DOI
Wu T. Y. H.; Hassig C.; Wu Y.; Ding S.; Schultz P. G. Design, Synthesis, and Activity of HDAC Inhibitors with a N-Formyl Hydroxylamine Head Group. Bioorg. Med. Chem. Lett. 2004, 14, 449–453. 10.1016/j.bmcl.2003.10.055. PubMed DOI
Jiao P.; Jin P.; Li C.; Cui L.; Dong L.; Pan B.; Song W.; Ma L.; Dong J.; Song L.; Jin X.; Li F.; Wan M.; Lv Z.; Geng Q. Design, Synthesis and in Vitro Evaluation of Amidoximes as Histone Deacetylase Inhibitors for Cancer Therapy. Bioorg. Med. Chem. Lett. 2016, 26, 4679–4683. 10.1016/j.bmcl.2016.08.073. PubMed DOI
Nishino N.; Yoshikawa D.; Watanabe L. A.; Kato T.; Jose B.; Komatsu Y.; Sumida Y.; Yoshida M. Synthesis and Histone Deacetylase Inhibitory Activity of Cyclic Tetrapeptides Containing a Retrohydroxamate as Zinc Ligand. Bioorg. Med. Chem. Lett. 2004, 14, 2427–2431. 10.1016/j.bmcl.2004.03.018. PubMed DOI
Hai Y.; Christianson D. W. Histone Deacetylase 6 Structure and Molecular Basis of Catalysis and Inhibition. Nat. Chem. Biol. 2016, 12, 1–21. 10.1038/nchembio.2134. PubMed DOI PMC
Miyake Y.; Keusch J. J.; Wang L.; Saito M.; Hess D.; Wang X.; Melancon B. J.; Helquist P.; Gut H.; Matthias P. Structural Insights into HDAC6 Tubulin Deacetylation and Its Selective Inhibition. Nat. Chem. Biol. 2016, 12, 748–754. 10.1038/nchembio.2140. PubMed DOI
Kawaguchi Y.; Kovacs J. J.; McLaurin A.; Vance J. M.; Ito A.; Yao T. P. The Deacetylase HDAC6 Regulates Aggresome Formation and Cell Viability in Response to Misfolded Protein Stress. Cell 2003, 115, 727–738. 10.1016/S0092-8674(03)00939-5. PubMed DOI
Grozinger C. M.; Hassig C. A.; Schreiber S. L. Three Proteins Define a Class of Human Histone Deacetylases Related to Yeast Hda1p. Proc. Natl. Acad. Sci. U. S. A. 1999, 96, 4868–4873. 10.1073/pnas.96.9.4868. PubMed DOI PMC
Haggarty S. J.; Koeller K. M.; Wong J. C.; Grozinger C. M.; Schreiber S. L. Domain-Selective Small-Molecule Inhibitor of Histone Deacetylase 6 (HDAC6)-Mediated Tubulin Deacetylation. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 4389–4394. 10.1073/pnas.0430973100. PubMed DOI PMC
Cheng F.; Wang H.; Horna P.; Wang Z.; Shah B.; Sahakian E.; Woan K. V.; Villagra A.; Pinilla-ibarz J.; Sebti S.; Smith M.; Tao J.; Sotomayor E. M. Stat3 Inhibition Augments the Immunogenicity of B-Cell Lymphoma Cells, Leading to Effective Antitumor Immunity. Cancer Res. 2012, 72, 4440–4448. 10.1158/0008-5472.CAN-11-3619. PubMed DOI PMC
Hussein M. R. Tumour-infiltrating lymphocytes and melanoma tumorigenesis: an insight. Br. J. Dermatol. 2005, 153, 18–21. 10.1111/j.1365-2133.2005.06629.x. PubMed DOI
Grütz G. New insights into the molecular mechanism of interleukin-10-mediated immunosuppression. J. Leukocyte Biol. 2005, 77, 3–15. 10.1189/jlb.0904484. PubMed DOI
Itakura E.; Huang R. R.; Wen D. R.; Paul E.; Wünsch P. H.; Cochran A. J. IL-10 expression by primary tumor cells correlates with melanoma progression from radial to vertical growth phase and development of metastatic competence. Mod. Pathol. 2011, 24, 801–809. 10.1038/modpathol.2011.5. PubMed DOI PMC
Kim J.; Modlin R. L.; Moy R. L.; Dubinett S. M.; McHugh T.; Nickoloff B. J.; Uyemura K. IL-10 production in cutaneous basal and squamous cell carcinomas. A mechanism for evading the local T cell immune response. J. Immunol. 1995, 155, 2240–2247. PubMed
Leivonen S. K.; Kähäri V. M. Transforming growth factor-beta signaling in cancer invasion and metastasis. Int. J. Cancer 2007, 121, 2119–2124. 10.1002/ijc.23113. PubMed DOI
Krüger-Krasagakes S.; Krasagakis K.; Garbe C.; Schmitt E.; Hüls C.; Blankenstein T.; Diamantstein T. Expression of interleukin 10 in human melanoma. Br. J. Cancer 1994, 70, 1182–1185. 10.1038/bjc.1994.469. PubMed DOI PMC
Cheng F.; Lienlaf M.; Wang H. W.; Perez-Villarroel P.; Lee C.; Woan K.; Rock-Klotz J.; Sahakian E.; Woods D.; Pinilla-Ibarz J.; Kalin J.; Tao J.; Hancock W.; Kozikowski A. P.; Seto E.; Villagra A.; Sotomayor E. M. A Novel Role for Histone Deacetylase 6 in the Regulation of the Tolerogenic STAT3/IL-10 Pathway in APCs. J. Immunol. 2014, 193, 2850–2862. 10.4049/jimmunol.1302778. PubMed DOI PMC
Cheng F.; Lienlaf M.; Perez-Villarroel P.; Wang H. W.; Lee C.; Woan K.; Woods D.; Knox T.; Bergman J.; Pinilla-Ibarz J.; Kozikowski A.; Seto E.; Sotomayor E. M.; Villagra A. Divergent roles of histone deacetylase 6 (HDAC6) and histone deacetylase 11 (HDAC11) on the transcriptional regulation of IL10 in antigen presenting cells. Mol. Immunol. 2014, 60, 44–53. 10.1016/j.molimm.2014.02.019. PubMed DOI PMC
Shen S.; Kozikowski A. P. Why Hydroxamates May Not Be the Best Histone Deacetylase Inhibitors - What Some May Have Forgotten or Would Rather Forget?. ChemMedChem 2016, 11, 15–21. 10.1002/cmdc.201500486. PubMed DOI PMC