Adsorbate-driven cooling of carbene-based molecular junctions
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
29090108
PubMed Central
PMC5647705
DOI
10.3762/bjnano.8.206
Knihovny.cz E-zdroje
- Klíčová slova
- adsorbate, carbene, current-induced heating and cooling, molecular junction, vibrations,
- Publikační typ
- časopisecké články MeSH
We study the role of an NH2 adsorbate on the current-induced heating and cooling of a neighboring carbene-based molecular circuit. We use first-principles methods of inelastic tunneling transport based on density functional theory and non-equilibrium Green's functions to calculate the rates of emission and absorbtion of vibrations by tunneling electrons, the population of vibrational modes and the energy stored in them. We find that the charge rearrangement resulting from the adsorbate gates the carbene electronic structure and reduces the density of carbene states near the Fermi level as a function of bias. These effects result in the cooling of carbene modes at all voltages compared to the "clean" carbene-based junction. We also find that the direct influence of adsorbate states is significantly smaller and tends to heat adsorbate vibrations. Our results highlight the important role of molecular adsorbates not only on the electronic and elastic transport properties but also on the current-induced energy exchange and stability under bias of single-molecule circuits.
Zobrazit více v PubMed
Aviram A, Ratner M A. Chem Phys Lett. 1974;29:277–283. doi: 10.1016/0009-2614(74)85031-1. DOI
Ratner M A. Nat Nanotechnol. 2013;8:378–381. doi: 10.1038/nnano.2013.110. PubMed DOI
Sun L, Diaz-Fernandez Y A, Gschneidtner T A, Westerlund F, Lara-Avila S, Moth-Poulsen K. Chem Soc Rev. 2014;43:7378–7411. doi: 10.1039/C4CS00143E. PubMed DOI
Xiang D, Wang X, Jia C, Lee T, Guo X. Chem Rev. 2016;116:4318–4440. doi: 10.1021/acs.chemrev.5b00680. PubMed DOI
Romano G, Gagliardi A, Pecchia A, Di Carlo A. Phys Rev B. 2010;81:115438. doi: 10.1103/PhysRevB.81.115438. DOI
Lü J-T, Hedegård P, Brandbyge M. Phys Rev Lett. 2011;107:046801. doi: 10.1103/PhysRevLett.107.046801. PubMed DOI
Franke K J, Pascual J I. J Phys: Condens Matter. 2012;24:394002. doi: 10.1088/0953-8984/24/39/394002. PubMed DOI
Lee W, Kim K, Jeong W, Zotti L A, Pauly F, Cuevas J C, Reddy P. Nature. 2013;498:209–212. doi: 10.1038/nature12183. PubMed DOI
Kaasbjerg K, Novotný T, Nitzan A. Phys Rev B. 2013;88:201405. doi: 10.1103/PhysRevB.88.201405. DOI
Li H, Kim N T, Su T A, Steigerwald M L, Nuckolls C, Darancet P, Leighton J L, Venkataraman L. J Am Chem Soc. 2016;138:16159–16164. doi: 10.1021/jacs.6b10700. PubMed DOI
Xu B, Tao N J. Science. 2003;301:1221–1223. doi: 10.1126/science.1087481. PubMed DOI
Venkataraman L, Klare J E, Tam I W, Nuckolls C, Hybertsen M S, Steigerwald M L. Nano Lett. 2006;6:458–462. doi: 10.1021/nl052373+. PubMed DOI
Frei M, Aradhya S V, Hybertsen M S, Venkataraman L. J Am Chem Soc. 2012;134:4003–4006. doi: 10.1021/ja211590d. PubMed DOI
Xiang D, Jeong H, Lee T, Mayer D. Adv Mater. 2013;25:4845–4867. doi: 10.1002/adma.201301589. PubMed DOI
Choi B, Capozzi B, Ahn S, Turkiewicz A, Lovat G, Nuckolls C, Steigerwald M L, Venkataraman L, Roy X. Chem Sci. 2016;7:2701–2705. doi: 10.1039/C5SC02595H. PubMed DOI PMC
Luka-Guth K, Hambsch S, Bloch A, Ehrenreich P, Briechle B M, Kilibarda F, Sendler T, Sysoiev D, Huhn T, Erbe A, et al. Beilstein J Nanotechnol. 2016;7:1055–1067. doi: 10.3762/bjnano.7.99. PubMed DOI PMC
Long D P, Lazorcik J L, Mantooth B A, Moore M H, Ratner M A, Troisi A, Yao Y, Ciszek J W, Tour J M, Shashidhar R. Nat Mater. 2006;5:901–908. doi: 10.1038/nmat1754. PubMed DOI
Cheng Z-L, Skouta R, Vázquez H, Widawsky J R, Schneebeli S, Chen W, Hybertsen M S, Breslow R, Venkataraman L. Nat Nanotechnol. 2011;6:353–357. doi: 10.1038/nnano.2011.66. PubMed DOI
Chen W, Widawsky J R, Vázquez H, Schneebeli S T, Hybertsen M S, Breslow R, Venkataraman L. J Am Chem Soc. 2011;133:17160–17163. doi: 10.1021/ja208020j. PubMed DOI
Widawsky J R, Chen W, Vázquez H, Kim T, Breslow R, Hybertsen M S, Venkataraman L. Nano Lett. 2013;13:2889–2894. doi: 10.1021/nl4012276. PubMed DOI
Foti G, Vázquez H, Sánchez-Portal D, Arnau A, Frederiksen T. J Phys Chem C. 2014;118:27106–27112. doi: 10.1021/jp5077824. DOI
Liang J, Smith R E G, Vezzoli A, Xie L, Milan D C, Davidson R, Beeby A, Low P J, Higgins S J, Mao B, et al. Electrochim Acta. 2016;220:436. doi: 10.1016/j.electacta.2016.10.095. DOI
Aradhya S V, Venkataraman L. Nat Nanotechnol. 2013;8:399–410. doi: 10.1038/nnano.2013.91. PubMed DOI
Yoshida K, Pobelov I V, Manrique D Z, Pope T, Mészáros G, Gulcur M, Bryce M R, Lambert C J, Wandlowski T. Sci Rep. 2015;5:9002. doi: 10.1038/srep09002. PubMed DOI PMC
Arduengo A J, III, Harlow R L, Kline M. J Am Chem Soc. 1991;113:361–363. doi: 10.1021/ja00001a054. DOI
Hopkinson M N, Richter C, Schedler M, Glorius F. Nature. 2014;510:485–496. doi: 10.1038/nature13384. PubMed DOI
Crudden C M, Horton J H, Ebralidze I I, Zenkina O V, McLean A B, Drevniok B, She Z, Kraatz H-B, Mosey N J, Seki T, et al. Nat Chem. 2014;6:409–414. doi: 10.1038/nchem.1891. PubMed DOI
Foti G, Vázquez H. Nanotechnology. 2016;27:125702. doi: 10.1088/0957-4484/27/12/125702. PubMed DOI
Foti G, Vázquez H. J Phys Chem C. 2017;121:1082–1088. doi: 10.1021/acs.jpcc.6b11955. DOI
Soler J M, Artacho E, Gale J D, García A, Junquera J, Ordejón P, Sánchez-Portal D. J Phys: Condens Matter. 2002;14:2745. doi: 10.1088/0953-8984/14/11/302. PubMed DOI
Brandbyge M, Mozos J-L, Ordejón P, Taylor J, Stokbro K. Phys Rev B. 2002;65:165401. doi: 10.1103/PhysRevB.65.165401. DOI
Perdew J P, Burke K, Ernzerhof M. Phys Rev Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI
Frederiksen T, Paulsson M, Brandbyge M, Jauho A-P. Phys Rev B. 2007;75:205413. doi: 10.1103/PhysRevB.75.205413. DOI
Foti G, Sánchez-Portal D, Arnau A, Frederiksen T. Phys Rev B. 2015;91:035434. doi: 10.1103/PhysRevB.91.035434. DOI
Paulsson M, Brandbyge M. Phys Rev B. 2007;76:115117. doi: 10.1103/PhysRevB.76.115117. PubMed DOI
Pecchia A, Romano G, Di Carlo A, Gagliardi A, Frauenheim T. J Comput Electron. 2008;7:384–389. doi: 10.1007/s10825-008-0219-1. DOI
Pecchia A, Romano G, Di Carlo A. Phys Rev B. 2007;75:035401. doi: 10.1103/PhysRevB.75.035401. DOI
Romano G, Pecchia A, Carlo A D. J Phys: Condens Matter. 2007;19:215207. doi: 10.1088/0953-8984/19/21/215207. DOI
Gunst T, Lü J-T, Hedegård P, Brandbyge M. Phys Rev B. 2013;88:161401. doi: 10.1103/PhysRevB.88.161401. DOI
Gagliardi A, Romano G, Pecchia A, Di Carlo A, Frauenheim T, Niehaus T A. New J Phys. 2008;10:065020. doi: 10.1088/1367-2630/10/6/065020. PubMed DOI
Datta S. Electronic Transport in Mesoscopic Systems. Cambridge, UK: Cambridge University Press; 1995.
Hybertsen M S, Venkataraman L, Klare J E, Whalley A C, Steigerwald M L, Nuckolls C. J Phys: Condens Matter. 2008;20:374115. doi: 10.1088/0953-8984/20/37/374115. PubMed DOI