Registration of Partially Focused Images for 2D and 3D Reconstruction of Oversized Samples

. 2017 ; 2017 () : 8538215. [epub] 20170810

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29109827

Methods of fracture surface 3D reconstruction from a series of partially focused images acquired in a small field of view (e.g., by confocal microscope or CCD camera) are well known. In this case, projection rays can be considered parallel and recorded images do not differ in any geometrical transformation from each other. In the case of larger samples (oversized for microscope or CCD camera), it is necessary to use a wider viewing field (e.g., standard cameras); taken images primarily differ in scaling but may also differ in shifting and rotation. These images cannot be used for reconstruction directly; they must be registered; that is, we must determine all transformations in which the images differ and eliminate their effects. There are several ways to do this. This paper deals with the registration based on phase correlation.

Zobrazit více v PubMed

Martišek D., Procházková J., Ficker T. High-quality three-dimensional reconstruction and noise reduction of multifocal images from oversized samples. Journal of Electronic Imaging. 2015;24(5) doi: 10.1117/1.JEI.24.5.053029.053029 DOI

Ficker T., Martišek D. Three-dimensional reconstructions of solid surfaces using conventional microscopes. Scanning. 2016;38(1):21–35. doi: 10.1002/sca.21238. PubMed DOI

Martišek D., Druckmüllerová H. Multifocal image processing. Mathematics for Applications. 2014;3(1):77–90. doi: 10.13164/ma.2014.06. DOI

Martišek D. The two-dimensional and three-dimensional processing of images provided by conventional microscopes. Scanning. 2002;24(6):284–295. doi: 10.1002/sca.4950240602. PubMed DOI

Ficker T., Martišek D., Jennings H. M. Roughness of fracture surfaces and compressive strength of hydrated cement pastes. Cement and Concrete Research. 2010;40(6):947–955. doi: 10.1016/j.cemconres.2010.02.002. DOI

Ficker T., Martišek D. Digital fracture surfaces and their roughness analysis: Applications to cement-based materials. Cement and Concrete Research. 2012;42(6):827–833. doi: 10.1016/j.cemconres.2012.03.007. DOI

Ichikawa Y., Toriwaki J. Confocal microscope 3D visualizing method for fine surface characterization of microstructures. Proceedings of SPIE 2862, Flatness, Roughness, and Discrete Defect Characterization for Computer Disks, Wafers, and Flat Panel Displays; Denver, Colo, USA. pp. 96–101. DOI

Lange D. A., Jennings H. M., Shah S. P. Analysis of surface roughness using confocal microscopy. Journal of Materials Science. 1993;28(14):3879–3884. doi: 10.1007/BF00353195. DOI

Nadolny K. Confocal laser scanning microscopy for characterisation of surface microdiscontinuities of vitrified bonded abrasive tools. International Journal of Mechanical Engineering and Robotics Research. 2012;1(1):14–29.

Niederost M., Niederöst J., Ščučka J. Automatic 3d reconstruction and visualization of microscopic objects from a macroscopic multificus image sequence. Proceedings of the International Archives of the Photogrammetry, Remote Sensing and spatial Information Sciences 34(5/W10); 2003.

Thiéry V., Green D. I. The multifocus imaging technique in petrology. Computers and Geosciences. 2012;45:131–138. doi: 10.1016/j.cageo.2011.10.027. DOI

Ficker T., Martišek D. Computer Evaluation of Asperity Topology of Rock Joints. Procedia Earth and Planetary Science. 2015;15:125–132. doi: 10.1016/j.proeps.2015.08.031. DOI

Hunter J. K., Nachtergaele B. Applied Analysis. 1st. World Scientific Publishing Company; 2001. DOI

Stern E. M., Weiss G. L. Introduction to Fourier Analysis on Euclidean Spaces. Princeton, NJ, USA: Princeton University Press; 1975.

Druckmüllerová H. Application of adaptive filters in processing of solar corona images [Ph.D. Thesis] Brno University of Technology; 2014.

Pratt W. K. Digital Image Processing: PIKS Inside. 3rd. New York, USA: John Wiley & Sons, Inc.; 2001. DOI

Zitová B., Flusser J. Image registration methods: a survey. Image and Vision Computing. 2003;21(11):977–1000. doi: 10.1016/S0262-8856(03)00137-9. DOI

Wyawahare M. V., Patil P. M., Abhyankar H. K. Image registration techniques: an overview. International Journal of Signal Processing, Image Processing and Pattern Recognition. 2009;2(3)

Kuglin C. D., Hines D. C. The phase correlation image alignment method. Proceeding of IEEE International Conference on Cybernetics and Society; 1975; New York, NY, USA. pp. 163–165.

Reddy B. S., Chatterji B. N. An FFT-based technique for translation, rotation, and scale-invariant image registration. IEEE Transactions on Image Processing. 1996;5(8):1266–1271. doi: 10.1109/83.506761. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...