Structure and Mechanical Properties of Al-Cu-Fe-X Alloys with Excellent Thermal Stability
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
29113096
PubMed Central
PMC5706216
DOI
10.3390/ma10111269
PII: ma10111269
Knihovny.cz E-zdroje
- Klíčová slova
- Al-Cu-Fe alloys, hot extrusion, melt-spinning, quasicrystals, thermal stability,
- Publikační typ
- časopisecké články MeSH
In this work, the structure and mechanical properties of innovative Al-Cu-Fe based alloys were studied. We focused on preparation and characterization of rapidly solidified and hot extruded Al-Cu-Fe, Al-Cu-Fe-Ni and Al-Cu-Fe-Cr alloys. The content of transition metals affects mechanical properties and structure. For this reason, microstructure, phase composition, hardness and thermal stability have been investigated in this study. The results showed exceptional thermal stability of these alloys and very good values of mechanical properties. Alloying by chromium ensured the highest thermal stability, while nickel addition refined the structure of the consolidated alloy. High thermal stability of all tested alloys was described in context with the transformation of the quasicrystalline phases to other types of intermetallics.
Zobrazit více v PubMed
Kim T.S., Suryanarayana C., Chun B.S. Effect of alloying elements and degassing pressure on the structure and mechanical properties of rapidly solidified Al-20Si-5Fe-2X (X = Cr, Zr, or Ni) alloys. Mater. Sci. Eng. A. 2000;278:113–120. doi: 10.1016/S0921-5093(99)00589-4. DOI
Průša F., Vojtěch D. Mechanical properties and thermal stability of Al-23Si-8Fe-1Cr and Al-23Si-8Fe-5Mn alloys prepared by powder metallurgy. Mater. Sci. Eng. A. 2013;565:13–20. doi: 10.1016/j.msea.2012.11.119. DOI
Rajabi M., Simchi A., Vahidi M., Davami P. Effect of particle size on the microstructure of rapidly solidified Al-20Si-5Fe-2X (X = Cu, Ni, Cr) powder. J. Alloy. Compd. 2008;466:111–118. doi: 10.1016/j.jallcom.2007.11.078. DOI
Huttunen-Saarivirta E., Vuorinen J. Preparation and characterisation of melt-spun Al-Cu-Fe quasicrystals. Intermetallics. 2005;13:885–895. doi: 10.1016/j.intermet.2005.02.004. DOI
Shechtman D., Blech I., Gratias D., Cahn J.W. Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 1984;53:1951. doi: 10.1103/PhysRevLett.53.1951. DOI
Samavat F., Tavakoli M.H., Habibi S., Jaleh B., Ahmad P.T. Quasicrystals. Open J. Phys. Chem. 2012;2:7–14. doi: 10.4236/ojpc.2012.21002. DOI
Lityńska-Dobrzyńska L., Dutkiewicz J., Stan-Głowińska K., Wajda W., Dembinski L., Langlade C., Coddet C. Characterization of aluminium matrix composites reinforced by Al-Cu-Fe quasicrystalline particles. J. Alloy. Compd. 2015;643:114–118. doi: 10.1016/j.jallcom.2014.11.125. DOI
Dubois J.C., Kang S.S., Perrot A. Towards applications of quasicrystals. Mater. Sci. Eng. A. 1994;179:122–126. doi: 10.1016/0921-5093(94)90177-5. DOI
Huttunen-Saarivirta E. Microstructure, fabrication and properties of quasicrystalline Al–Cu–Fe alloys: A review. J. Alloy. Compd. 2004;363:154–178. doi: 10.1016/S0925-8388(03)00445-6. DOI
Laplanche G., Bonneville J., Joulain A., Gauthier-Brunet V., Dubois S. Mechanical properties of Al-Cu-Fe quasicrystalline and crystalline phases: An analogy. Intermetallics. 2014;50:54–58. doi: 10.1016/j.intermet.2014.02.004. DOI
Ali F., Scudino S., Liu G., Srivastava V.C., Mukhopadhyay N.K., Samadi Khoshkhoo M., Prashanth K.G., Uhlenwinkel V., Calin M., Eckert J. Modeling the strengthening effect of Al-Cu-Fe quasicrystalline particles in Al-based metal matrix composites. J. Alloy. Compd. 2012;536:130–133. doi: 10.1016/j.jallcom.2011.12.022. DOI
Singh A., Ranganathan S. A transmission icosahedral electron microscopic study of twins-II. A rapidly solidified Al-Cu-Fe alloy. Acta. Metall. 1995;43:3553–3562. doi: 10.1016/0956-7151(95)00025-Q. DOI
Guo J.Q., Kazama N.S. Mechanical properties of rapidly solidified Al-Ti-Fe, Al-Cu-Fe and Al-Fe-Cu-Ti based alloys extruded from their atomized powders. Mater. Sci. Eng. A. 1997;232:177–182. doi: 10.1016/S0921-5093(97)00109-3. DOI
Andersen S.J., Guo X.Y., Høier R., Waterloo G. Microstructure of rapidly solidified A1-7.5Cu-2.5Fe. Mater. Sci. Eng. A. 1994;179–180:665–668. doi: 10.1016/0921-5093(94)90289-5. DOI
Novák P., Kubatík T., Vystrčil J., Hendrych R., Kříž J., Mlynár J., Vojtěch D. Powder metallurgy preparation of Al-Cu-Fe quasicrystals using mechanical alloying and spark plasma sintering. Intermetallics. 2014;52:131–137. doi: 10.1016/j.intermet.2014.04.003. DOI
Lee S.M., Jung J.H., Fleury E., Kim W.T., Kim D.H. Metal matrix composites reinforced by gas-atomised Al-Cu-Fe powders. Mater. Sci. Eng. A. 2000;294–296:99–103. doi: 10.1016/S0921-5093(00)01223-5. DOI
Tsai A.P., Inoue A., Masumoto T. New quasicrystals in AI65Cu20Mn15 (M = Cr, Mn or Fe) systems prepared by rapid solidification. J. Mater. Sci. Lett. 1988;7:322–326. doi: 10.1007/BF01730730. DOI
Inoue A. Amorphous, nanoquasicrystalline and nanocrystalline alloys in Al-based systems. Prog. Mater. Sci. 1998;43:365–520. doi: 10.1016/S0079-6425(98)00005-X. DOI
Ustinov A.I., Movchan B.A., Polishchuk S.S. Formation of nanoquasicrystalline Al-Cu-Fe coatings at electron beam physical vapour deposition. Scripta. Mat. 2004;50:533–537. doi: 10.1016/j.scriptamat.2003.10.025. DOI
Rosas G., Perez R. On the transformations of the ψ-AlCuFe icosahedral phase. Mater. Lett. 2001;47:225–230. doi: 10.1016/S0167-577X(00)00239-1. DOI
Tcherdyntsev V.V., Kaloshkin S.D., Shelekhov E.V., Salimon A.I., Sartori S., Principi G. Quasicrystalline phase formation in the mechanically alloyed Al-Cu-Fe system. Intermetallics. 2005;13:841–847. doi: 10.1016/j.intermet.2005.01.009. DOI
Tsai A., Inoue A., Masumoto T. Preparation of a new AI-Cu-Fe quasicrystal with large grain sizes by rapid solidification. J. Mater. Sci. Lett. 1987;6:1403–1405. doi: 10.1007/BF01689302. DOI
Li L., Bi Q., Yang J., Fu L., Wang L., Wang S., Liu W. Large-scale synthesis of Al-Cu-Fe submicron quasicrystals. Scripta. Mat. 2008;59:587–590. doi: 10.1016/j.scriptamat.2008.05.008. DOI
Soltani N., Jafari Nodooshan H.R., Bahrami A., Pech-Canul M.I., Liu W., Wu G. Effect of hot extrusion on wear properties of Al-15 wt % Mg2Si in situ metal matrix composites. Mater. Design. 2014;53:774–781. doi: 10.1016/j.matdes.2013.07.084. DOI
Deaquino-Lara R., Soltani N., Bahrami A., Gutiérrez-Castañeda E., García-Sánchez E., Hernandez-Rodriguez M.A.L. Tribological characterization of Al7075-graphite composites fabricated by mechanical alloying and hot extrusion. Mater. Design. 2015;67:224–231. doi: 10.1016/j.matdes.2014.11.045. DOI
Soltani N., Bahrami A., Pech-Canul M.I. The effect of Ti on mechanical properties of extruded in-situ Al-15 pct Mg2Si composite. Metall. Mater. Trans. A. 2013;44:4366–4373. doi: 10.1007/s11661-013-1747-2. DOI
Soltani N., Bahrami A., Moghimi F.M., Pech-Canul M.I., Hajaghasi A. The simultaneous effect of extrusion and T6 treatment on the mechanical properties of Al-15 wt % Mg2Si composite. J. Heat Treat. Mater. 2012;67:378–385. doi: 10.3139/105.110158. DOI
Rosas G., Reyes-Gasga J., Pérez R. Morphological characteristics of the rapidly and conventionally solidified alloys of the AlCuFe system. Mater. Charact. 2007;58:765–770. doi: 10.1016/j.matchar.2006.12.004. DOI
Wang E.R., Hui X.D., Wang S.S., Zhao Y.F., Chen G.L. Improved mechanical properties in cast Al-Si alloys by combined alloying of Fe and Cu. Mater. Sci. Eng. A. 2010;527:7878–7884. doi: 10.1016/j.msea.2010.08.058. DOI
Zhang L., Lück R. Phase equilibria of the icosahedral Al-Cu-Fe phase. J. Alloy. Compd. 2002;342:53–56. doi: 10.1016/S0925-8388(02)00133-0. DOI
Ohashi T., Dai L., Fukatsu N. Decomposition characteristics of Al-Mn-Zr alloys rapidly-quenched from melt. Metall. Trans. A. 1986;17:799–806. doi: 10.1007/BF02643855. DOI
Phase Transformation Induced Self-Healing Behavior of Al-Ag Alloy