Structure and Mechanical Properties of Al-Cu-Fe-X Alloys with Excellent Thermal Stability

. 2017 Nov 05 ; 10 (11) : . [epub] 20171105

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29113096

In this work, the structure and mechanical properties of innovative Al-Cu-Fe based alloys were studied. We focused on preparation and characterization of rapidly solidified and hot extruded Al-Cu-Fe, Al-Cu-Fe-Ni and Al-Cu-Fe-Cr alloys. The content of transition metals affects mechanical properties and structure. For this reason, microstructure, phase composition, hardness and thermal stability have been investigated in this study. The results showed exceptional thermal stability of these alloys and very good values of mechanical properties. Alloying by chromium ensured the highest thermal stability, while nickel addition refined the structure of the consolidated alloy. High thermal stability of all tested alloys was described in context with the transformation of the quasicrystalline phases to other types of intermetallics.

Zobrazit více v PubMed

Kim T.S., Suryanarayana C., Chun B.S. Effect of alloying elements and degassing pressure on the structure and mechanical properties of rapidly solidified Al-20Si-5Fe-2X (X = Cr, Zr, or Ni) alloys. Mater. Sci. Eng. A. 2000;278:113–120. doi: 10.1016/S0921-5093(99)00589-4. DOI

Průša F., Vojtěch D. Mechanical properties and thermal stability of Al-23Si-8Fe-1Cr and Al-23Si-8Fe-5Mn alloys prepared by powder metallurgy. Mater. Sci. Eng. A. 2013;565:13–20. doi: 10.1016/j.msea.2012.11.119. DOI

Rajabi M., Simchi A., Vahidi M., Davami P. Effect of particle size on the microstructure of rapidly solidified Al-20Si-5Fe-2X (X = Cu, Ni, Cr) powder. J. Alloy. Compd. 2008;466:111–118. doi: 10.1016/j.jallcom.2007.11.078. DOI

Huttunen-Saarivirta E., Vuorinen J. Preparation and characterisation of melt-spun Al-Cu-Fe quasicrystals. Intermetallics. 2005;13:885–895. doi: 10.1016/j.intermet.2005.02.004. DOI

Shechtman D., Blech I., Gratias D., Cahn J.W. Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 1984;53:1951. doi: 10.1103/PhysRevLett.53.1951. DOI

Samavat F., Tavakoli M.H., Habibi S., Jaleh B., Ahmad P.T. Quasicrystals. Open J. Phys. Chem. 2012;2:7–14. doi: 10.4236/ojpc.2012.21002. DOI

Lityńska-Dobrzyńska L., Dutkiewicz J., Stan-Głowińska K., Wajda W., Dembinski L., Langlade C., Coddet C. Characterization of aluminium matrix composites reinforced by Al-Cu-Fe quasicrystalline particles. J. Alloy. Compd. 2015;643:114–118. doi: 10.1016/j.jallcom.2014.11.125. DOI

Dubois J.C., Kang S.S., Perrot A. Towards applications of quasicrystals. Mater. Sci. Eng. A. 1994;179:122–126. doi: 10.1016/0921-5093(94)90177-5. DOI

Huttunen-Saarivirta E. Microstructure, fabrication and properties of quasicrystalline Al–Cu–Fe alloys: A review. J. Alloy. Compd. 2004;363:154–178. doi: 10.1016/S0925-8388(03)00445-6. DOI

Laplanche G., Bonneville J., Joulain A., Gauthier-Brunet V., Dubois S. Mechanical properties of Al-Cu-Fe quasicrystalline and crystalline phases: An analogy. Intermetallics. 2014;50:54–58. doi: 10.1016/j.intermet.2014.02.004. DOI

Ali F., Scudino S., Liu G., Srivastava V.C., Mukhopadhyay N.K., Samadi Khoshkhoo M., Prashanth K.G., Uhlenwinkel V., Calin M., Eckert J. Modeling the strengthening effect of Al-Cu-Fe quasicrystalline particles in Al-based metal matrix composites. J. Alloy. Compd. 2012;536:130–133. doi: 10.1016/j.jallcom.2011.12.022. DOI

Singh A., Ranganathan S. A transmission icosahedral electron microscopic study of twins-II. A rapidly solidified Al-Cu-Fe alloy. Acta. Metall. 1995;43:3553–3562. doi: 10.1016/0956-7151(95)00025-Q. DOI

Guo J.Q., Kazama N.S. Mechanical properties of rapidly solidified Al-Ti-Fe, Al-Cu-Fe and Al-Fe-Cu-Ti based alloys extruded from their atomized powders. Mater. Sci. Eng. A. 1997;232:177–182. doi: 10.1016/S0921-5093(97)00109-3. DOI

Andersen S.J., Guo X.Y., Høier R., Waterloo G. Microstructure of rapidly solidified A1-7.5Cu-2.5Fe. Mater. Sci. Eng. A. 1994;179–180:665–668. doi: 10.1016/0921-5093(94)90289-5. DOI

Novák P., Kubatík T., Vystrčil J., Hendrych R., Kříž J., Mlynár J., Vojtěch D. Powder metallurgy preparation of Al-Cu-Fe quasicrystals using mechanical alloying and spark plasma sintering. Intermetallics. 2014;52:131–137. doi: 10.1016/j.intermet.2014.04.003. DOI

Lee S.M., Jung J.H., Fleury E., Kim W.T., Kim D.H. Metal matrix composites reinforced by gas-atomised Al-Cu-Fe powders. Mater. Sci. Eng. A. 2000;294–296:99–103. doi: 10.1016/S0921-5093(00)01223-5. DOI

Tsai A.P., Inoue A., Masumoto T. New quasicrystals in AI65Cu20Mn15 (M = Cr, Mn or Fe) systems prepared by rapid solidification. J. Mater. Sci. Lett. 1988;7:322–326. doi: 10.1007/BF01730730. DOI

Inoue A. Amorphous, nanoquasicrystalline and nanocrystalline alloys in Al-based systems. Prog. Mater. Sci. 1998;43:365–520. doi: 10.1016/S0079-6425(98)00005-X. DOI

Ustinov A.I., Movchan B.A., Polishchuk S.S. Formation of nanoquasicrystalline Al-Cu-Fe coatings at electron beam physical vapour deposition. Scripta. Mat. 2004;50:533–537. doi: 10.1016/j.scriptamat.2003.10.025. DOI

Rosas G., Perez R. On the transformations of the ψ-AlCuFe icosahedral phase. Mater. Lett. 2001;47:225–230. doi: 10.1016/S0167-577X(00)00239-1. DOI

Tcherdyntsev V.V., Kaloshkin S.D., Shelekhov E.V., Salimon A.I., Sartori S., Principi G. Quasicrystalline phase formation in the mechanically alloyed Al-Cu-Fe system. Intermetallics. 2005;13:841–847. doi: 10.1016/j.intermet.2005.01.009. DOI

Tsai A., Inoue A., Masumoto T. Preparation of a new AI-Cu-Fe quasicrystal with large grain sizes by rapid solidification. J. Mater. Sci. Lett. 1987;6:1403–1405. doi: 10.1007/BF01689302. DOI

Li L., Bi Q., Yang J., Fu L., Wang L., Wang S., Liu W. Large-scale synthesis of Al-Cu-Fe submicron quasicrystals. Scripta. Mat. 2008;59:587–590. doi: 10.1016/j.scriptamat.2008.05.008. DOI

Soltani N., Jafari Nodooshan H.R., Bahrami A., Pech-Canul M.I., Liu W., Wu G. Effect of hot extrusion on wear properties of Al-15 wt % Mg2Si in situ metal matrix composites. Mater. Design. 2014;53:774–781. doi: 10.1016/j.matdes.2013.07.084. DOI

Deaquino-Lara R., Soltani N., Bahrami A., Gutiérrez-Castañeda E., García-Sánchez E., Hernandez-Rodriguez M.A.L. Tribological characterization of Al7075-graphite composites fabricated by mechanical alloying and hot extrusion. Mater. Design. 2015;67:224–231. doi: 10.1016/j.matdes.2014.11.045. DOI

Soltani N., Bahrami A., Pech-Canul M.I. The effect of Ti on mechanical properties of extruded in-situ Al-15 pct Mg2Si composite. Metall. Mater. Trans. A. 2013;44:4366–4373. doi: 10.1007/s11661-013-1747-2. DOI

Soltani N., Bahrami A., Moghimi F.M., Pech-Canul M.I., Hajaghasi A. The simultaneous effect of extrusion and T6 treatment on the mechanical properties of Al-15 wt % Mg2Si composite. J. Heat Treat. Mater. 2012;67:378–385. doi: 10.3139/105.110158. DOI

Rosas G., Reyes-Gasga J., Pérez R. Morphological characteristics of the rapidly and conventionally solidified alloys of the AlCuFe system. Mater. Charact. 2007;58:765–770. doi: 10.1016/j.matchar.2006.12.004. DOI

Wang E.R., Hui X.D., Wang S.S., Zhao Y.F., Chen G.L. Improved mechanical properties in cast Al-Si alloys by combined alloying of Fe and Cu. Mater. Sci. Eng. A. 2010;527:7878–7884. doi: 10.1016/j.msea.2010.08.058. DOI

Zhang L., Lück R. Phase equilibria of the icosahedral Al-Cu-Fe phase. J. Alloy. Compd. 2002;342:53–56. doi: 10.1016/S0925-8388(02)00133-0. DOI

Ohashi T., Dai L., Fukatsu N. Decomposition characteristics of Al-Mn-Zr alloys rapidly-quenched from melt. Metall. Trans. A. 1986;17:799–806. doi: 10.1007/BF02643855. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Phase Transformation Induced Self-Healing Behavior of Al-Ag Alloy

. 2018 Jan 27 ; 11 (2) : . [epub] 20180127

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...