• This record comes from PubMed

Point cloud registration from local feature correspondences-Evaluation on challenging datasets

. 2017 ; 12 (11) : e0187943. [epub] 20171114

Language English Country United States Media electronic-ecollection

Document type Journal Article

Registration of laser scans, or point clouds in general, is a crucial step of localization and mapping with mobile robots or in object modeling pipelines. A coarse alignment of the point clouds is generally needed before applying local methods such as the Iterative Closest Point (ICP) algorithm. We propose a feature-based approach to point cloud registration and evaluate the proposed method and its individual components on challenging real-world datasets. For a moderate overlap between the laser scans, the method provides a superior registration accuracy compared to state-of-the-art methods including Generalized ICP, 3D Normal-Distribution Transform, Fast Point-Feature Histograms, and 4-Points Congruent Sets. Compared to the surface normals, the points as the underlying features yield higher performance in both keypoint detection and establishing local reference frames. Moreover, sign disambiguation of the basis vectors proves to be an important aspect in creating repeatable local reference frames. A novel method for sign disambiguation is proposed which yields highly repeatable reference frames.

See more in PubMed

Besl PJ, McKay ND. A method for registration of 3-D shapes. Pattern Analysis and Machine Intelligence, IEEE Transactions on. 1992;14(2):239–256. doi: 10.1109/34.121791 DOI

Chen Y, Medioni G. Object modelling by registration of multiple range images. Image and Vision Computing. 1992;10(3):145–155. doi: 10.1016/0262-8856(92)90066-C DOI

Segal AV, Haehnel D, Thrun S. Generalized-ICP In: Robotics: Science and Systems V. Seattle, USA; 2009.

Pomerleau F, Colas F, Siegwart R, Magnenat S. Comparing ICP variants on real-world data sets. Autonomous Robots. 2013;34(3):133–148. doi: 10.1007/s10514-013-9327-2 DOI

Rusu RB, Blodow N, Beetz M. Fast Point Feature Histograms (FPFH) for 3D registration. In: 2009 IEEE International Conference on Robotics and Automation; 2009. p. 3212–3217.

Mian A, Bennamoun M, Owens R. On the Repeatability and Quality of Keypoints for Local Feature-based 3D Object Retrieval from Cluttered Scenes. International Journal of Computer Vision. 2010;89:348–361. doi: 10.1007/s11263-009-0296-z DOI

Mian AS, Bennamoun M, Owens RA. Automatic Correspondence for 3D Modeling: An Extensive Review. International Journal of Shape Modeling. 2005;11(02):253–291. doi: 10.1142/S0218654305000797 DOI

Fitzgibbon AW. Robust registration of 2D and 3D point sets. Image and Vision Computing. 2003;21(13–14):1145–1153. doi: 10.1016/j.imavis.2003.09.004 DOI

Magnusson M. The Three-Dimensional Normal-Distributions Transform—an Efficient Representation for Registration, Surface Analysis, and Loop Detection. Örebro University; 2009.

Aiger D, Mitra NJ, Cohen-Or D. 4-Points Congruent Sets for Robust Pairwise Surface Registration. ACM Trans Graph. 2008;27(3):85:1–85:10. doi: 10.1145/1360612.1360684 DOI

Theiler P, Wegner J, Schindler K. Markerless point cloud registration with keypoint-based 4-points congruent sets. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences. 2013;1(2):283–288. doi: 10.5194/isprsannals-II-5-W2-283-2013 DOI

Pomerleau F, Liu M, Colas F, Siegwart R. Challenging data sets for point cloud registration algorithms. The International Journal of Robotics Research. 2012;31(14):1705–1711. doi: 10.1177/0278364912458814 DOI

Hrabalík A. 3D Point Cloud Registration, Experimental Comparison and Fusing Range and Visual Data. Czech Technical University in Prague; 2014.

Magnusson M, Vaskevicius N, Stoyanov T, Pathak K, Birk A. Beyond points: Evaluating recent 3D scan-matching algorithms. In: 2015 IEEE International Conference on Robotics and Automation (ICRA); 2015. p. 3631–3637.

Petricek T, Svoboda T. Area-weighted Surface Normals for 3D Object Recognition. In: Pattern Recognition (ICPR), 2012 21th International Conference on; 2012. p. 1492–1496.

Bro R, Acar E, Kolda TG. Resolving the sign ambiguity in the singular value decomposition. Journal of Chemometrics. 2008;22(2):135–140. doi: 10.1002/cem.1122 DOI

Tombari F, Salti S, Di Stefano L. Unique Signatures of Histograms for Local Surface Description In: Daniilidis K, Maragos P, Paragios N, editors. Computer Vision—ECCV 2010. vol. 6313 of Lecture Notes in Computer Science. Springer; Berlin / Heidelberg; 2010. p. 356–369.

Fischler MA, Bolles RC. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun ACM. 1981;24(6):381–395. doi: 10.1145/358669.358692 DOI

Tombari F, Salti S, Di Stefano L. Performance Evaluation of 3D Keypoint Detectors. International Journal of Computer Vision. 2013;102:198–220. doi: 10.1007/s11263-012-0545-4 DOI

Zhong Y. Intrinsic shape signatures: A shape descriptor for 3D object recognition. In: Computer Vision Workshops (ICCV Workshops), 2009 IEEE 12th International Conference on; 2009. p. 689–696.

Rusu RB, Cousins S. 3D is here: Point Cloud Library (PCL). In: 2011 IEEE International Conference on Robotics and Automation; 2011. p. 1–4.

Shi J, Tomasi C. Good features to track. In: Computer Vision and Pattern Recognition, 1994. Proceedings CVPR’94., 1994 IEEE Computer Society Conference on; 1994. p. 593–600.

Johnson AE, Hebert M. Using spin images for efficient object recognition in cluttered 3D scenes. Pattern Analysis and Machine Intelligence, IEEE Transactions on. 1999;21(5):433–449. doi: 10.1109/34.765655 DOI

Chum O, Matas J, Kittler J. Locally Optimized RANSAC In: Michaelis B, Krell G, editors. Pattern Recognition. vol. 2781 of Lecture Notes in Computer Science. Springer; Berlin Heidelberg; 2003. p. 236–243.

Walker MW, Shao L, Volz RA. Estimating 3-D location parameters using dual number quaternions. CVGIP: Image Understanding. 1991;54(3):358–367. doi: 10.1016/1049-9660(91)90036-O DOI

Mikolajczyk K, Tuytelaars T, Schmid C, Zisserman A, Matas J, Schaffalitzky F, et al. A comparison of affine region detectors. International journal of computer vision. 2005;65(1):43–72. doi: 10.1007/s11263-005-3848-x DOI

Petrelli A, Di Stefano L. On the repeatability of the local reference frame for partial shape matching. In: Computer Vision (ICCV), 2011 IEEE International Conference on; 2011. p. 2244–2251.

Stoyanov T, Magnusson M, Lilienthal AJ. Point set registration through minimization of the L2 distance between 3D-NDT models. In: Robotics and Automation (ICRA), 2012 IEEE International Conference on; 2012. p. 5196–5201.

Das A, Servos J, Waslander SL. 3D Scan Registration Using the Normal Distributions Transform with Ground Segmentation and Point Cloud Clustering. In: 2013 IEEE International Conference on Robotics and Automation; 2013.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...