Visible light photocatalytic reduction of aldehydes by Rh(iii)-H: a detailed mechanistic study

. 2015 Mar 01 ; 6 (3) : 2027-2034. [epub] 20150106

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29142671

The chemoselective photoreduction of aldehydes in the presence of ketones was achieved using triethanolamine (TEOA) as sacrificial electron donor, proflavine (PF) as photocatalyst and [Cp*Rh(iii)(bpy)Cl]Cl (Rhcat) as mediator. The reducing agent, which reacts with the carbonyl group was found to be [Cp*Rh(iii)(bpy)H]Cl (Rh(iii)-H). Contrary to formate-based reduction, its slow photochemical in situ generation enables to kinetically distinguish aldehydes from ketones. The inherent reactivity difference of the carbonyl compounds is transferred by the method into synthetically useful reaction selectivities. The substrate scope is broad with excellent yields. A detailed study of the reaction mechanism reveals that the photoreduction of the PF triplet and the subsequent reduction of the Rhcat leading to Rh(iii)-H represents the major reaction pathway, which is highly oxygen sensitive. The oxidative quenching of the PF singlet state by Rhcat is a competing mechanism, which prevails in non-degassed systems.

Zobrazit více v PubMed

Tolstikov G. A., Odinokov V. N., Galeeva R. I., Bakeeva R. S., Akhunova V. R. Tetrahedron Lett. 1979;20:4851–4854.

Hutchins R. O., Kandasamy D. J. Am. Chem. Soc. 1973;95:6131–6133.

Ward D. E., Rhee C. K. Synth. Commun. 1988;18:1927–1933.

Ward D. E., Rhee C. K. Can. J. Chem. 1989;67:1206–1211.

Maki Y., Kikuchi K., Sugiyama H., Seto S. Tetrahedron Lett. 1977;18:263–264.

Adams C. Synth. Commun. 1984;14:1349–1353.

Zeynizadeh B., Shirini F. J. Chem. Res. 2003;2003:334–339.

Tanemura K., Suzuki T., Nishida Y., Satsumabayashi K., Horaguchi T. Synth. Commun. 2005;35:867–872.

Chandrasekhar S., Shrinidhi A. Synth. Commun. 2014;44:2051–2056.

Raber D. J., Guida W. C., Shoenberger D. C. Tetrahedron Lett. 1981;22:5107–5110.

Gribble G. W., Ferguson D. C. J. Chem. Soc., Chem. Commun. 1975:535–536.

Nutaitis C. F., Gribble G. W. Tetrahedron Lett. 1983;24:4287–4290.

Kuroiwa Y., Matsumura S., Toshima K. Synlett. 2008;2008:2523–2525.

Casey C. P., Strotman N. A., Beetner S. E., Johnson J. B., Priebe D. C., Guzei I. A. Organometallics. 2006;25:1236–1244.

Zhang M., Rouch W. D., McCulla R. D. Eur. J. Org. Chem. 2012;2012:6187–6196.

Nam D. H., Park C. B. ChemBioChem. 2012;13:1278–1282. PubMed

Armstrong R. W., Panzer N. M. J. Am. Chem. Soc. 1972;94:7650–7653. PubMed

Krasna A. I. Photochem. Photobiol. 1979;29:267–276.

Youinou M. T., Ziessel R. J. Organomet. Chem. 1989;363:197–208.

Hollmann F., Schmid A., Steckhan E. Angew. Chem., Int. Ed. 2001;40:169–171. PubMed

Lo H. C., Buriez O., Kerr J. B., Fish R. H. Angew. Chem., Int. Ed. 1999;38:1429–1432. PubMed

Leiva C., Lo H. C., Fish R. H. J. Organomet. Chem. 2010;695:145–150.

Himeda Y., Onozawa-Komatsuzaki N., Sugihara H., Arakawa H., Kasuga K. J. Mol. Catal. A: Chem. 2003;195:95–100.

Kölle U., Grätzel M. Angew. Chem., Int. Ed. Engl. 1987;99:572–574.

Menche D., Hassfeld J., Li J., Menche G., Ritter A., Rudolph S. Org. Lett. 2006;8:741–744. PubMed

Haugen G. R., Melhuish W. H. Trans. Faraday Soc. 1964;60:386.

Mataga N., Kaifu Y., Koizumi M. Bull. Chem. Soc. Jpn. 1956;29:373–379.

Parker C. A., Joyce T. A. Photochem. Photobiol. 1973;18:467–474. PubMed

Lee W. E., Galley W. C. Biophys. J. 1988;54:627–635. PubMed PMC

Kurz P., Probst B., Spingler B., Alberto R. Eur. J. Inorg. Chem. 2006;2006:2966–2974.

Pileni M. P., Grätzel M. J. Phys. Chem. 1980;84:2402–2406.

Chakraborty B., Basu S. Chem. Phys. Lett. 2009;477:382–387.

Steckhan E., Herrmann S., Ruppert R., Dietz E., Frede M., Spika E. Organometallics. 1991;10:1568–1577.

Lee S. H., Nam D. H., Kim J. H., Baeg J.-O., Park C. B. ChemBioChem. 2009;10:1621–1624. PubMed

Lee S. H., Nam D. H., Park C. B. Adv. Synth. Catal. 2009;351:2589–2594.

Lo H. C., Leiva C., Buriez O., Kerr J. B., Olmstead M. M., Fish R. H. Inorg. Chem. 2001;40:6705–6716. PubMed

Solar S., Solar W., Getoff N. Z. Naturforsch., A: Phys. Sci. 1982;37:1077–1082.

Oster G., Bellin J. S., Kimball R. W., Schrader M. E. J. Am. Chem. Soc. 1959;81:5095–5099.

Hussein B. H. M. and Goez M., Ph.D. Dissertation, Universität Halle-Wittenberg, Germany, 2005.

Kalyanasundaram K., Dung D. J. Phys. Chem. 1980;84:2551–2556.

Lv H., Guo W., Wu K., Chen Z., Bacsa J., Musaev D. G., Geletii Y. V., Lauinger S. M., Lian T., Hill C. L. J. Am. Chem. Soc. 2014;136:14015–14018. PubMed

Barrett S. M., Pitman C. L., Walden A. G., Miller A. J. M. J. Am. Chem. Soc. 2014;136:14718–14721. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Structural elaboration of dicyanopyrazine: towards push-pull molecules with tailored photoredox activity

. 2019 Jul 29 ; 9 (41) : 23797-23809. [epub] 20190731

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...