Visible light photocatalytic reduction of aldehydes by Rh(iii)-H: a detailed mechanistic study
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
29142671
PubMed Central
PMC5654342
DOI
10.1039/c4sc03709j
PII: c4sc03709j
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The chemoselective photoreduction of aldehydes in the presence of ketones was achieved using triethanolamine (TEOA) as sacrificial electron donor, proflavine (PF) as photocatalyst and [Cp*Rh(iii)(bpy)Cl]Cl (Rhcat) as mediator. The reducing agent, which reacts with the carbonyl group was found to be [Cp*Rh(iii)(bpy)H]Cl (Rh(iii)-H). Contrary to formate-based reduction, its slow photochemical in situ generation enables to kinetically distinguish aldehydes from ketones. The inherent reactivity difference of the carbonyl compounds is transferred by the method into synthetically useful reaction selectivities. The substrate scope is broad with excellent yields. A detailed study of the reaction mechanism reveals that the photoreduction of the PF triplet and the subsequent reduction of the Rhcat leading to Rh(iii)-H represents the major reaction pathway, which is highly oxygen sensitive. The oxidative quenching of the PF singlet state by Rhcat is a competing mechanism, which prevails in non-degassed systems.
Department of Chemistry Faculty of Science Masaryk University Kamenice 5 62500 Brno Czech Republic
Institute of Organic Chemistry University of Regensburg D 93040 Regensburg Germany Email
Zobrazit více v PubMed
Tolstikov G. A., Odinokov V. N., Galeeva R. I., Bakeeva R. S., Akhunova V. R. Tetrahedron Lett. 1979;20:4851–4854.
Hutchins R. O., Kandasamy D. J. Am. Chem. Soc. 1973;95:6131–6133.
Ward D. E., Rhee C. K. Synth. Commun. 1988;18:1927–1933.
Ward D. E., Rhee C. K. Can. J. Chem. 1989;67:1206–1211.
Maki Y., Kikuchi K., Sugiyama H., Seto S. Tetrahedron Lett. 1977;18:263–264.
Adams C. Synth. Commun. 1984;14:1349–1353.
Zeynizadeh B., Shirini F. J. Chem. Res. 2003;2003:334–339.
Tanemura K., Suzuki T., Nishida Y., Satsumabayashi K., Horaguchi T. Synth. Commun. 2005;35:867–872.
Chandrasekhar S., Shrinidhi A. Synth. Commun. 2014;44:2051–2056.
Raber D. J., Guida W. C., Shoenberger D. C. Tetrahedron Lett. 1981;22:5107–5110.
Gribble G. W., Ferguson D. C. J. Chem. Soc., Chem. Commun. 1975:535–536.
Nutaitis C. F., Gribble G. W. Tetrahedron Lett. 1983;24:4287–4290.
Kuroiwa Y., Matsumura S., Toshima K. Synlett. 2008;2008:2523–2525.
Casey C. P., Strotman N. A., Beetner S. E., Johnson J. B., Priebe D. C., Guzei I. A. Organometallics. 2006;25:1236–1244.
Zhang M., Rouch W. D., McCulla R. D. Eur. J. Org. Chem. 2012;2012:6187–6196.
Nam D. H., Park C. B. ChemBioChem. 2012;13:1278–1282. PubMed
Armstrong R. W., Panzer N. M. J. Am. Chem. Soc. 1972;94:7650–7653. PubMed
Krasna A. I. Photochem. Photobiol. 1979;29:267–276.
Youinou M. T., Ziessel R. J. Organomet. Chem. 1989;363:197–208.
Hollmann F., Schmid A., Steckhan E. Angew. Chem., Int. Ed. 2001;40:169–171. PubMed
Lo H. C., Buriez O., Kerr J. B., Fish R. H. Angew. Chem., Int. Ed. 1999;38:1429–1432. PubMed
Leiva C., Lo H. C., Fish R. H. J. Organomet. Chem. 2010;695:145–150.
Himeda Y., Onozawa-Komatsuzaki N., Sugihara H., Arakawa H., Kasuga K. J. Mol. Catal. A: Chem. 2003;195:95–100.
Kölle U., Grätzel M. Angew. Chem., Int. Ed. Engl. 1987;99:572–574.
Menche D., Hassfeld J., Li J., Menche G., Ritter A., Rudolph S. Org. Lett. 2006;8:741–744. PubMed
Haugen G. R., Melhuish W. H. Trans. Faraday Soc. 1964;60:386.
Mataga N., Kaifu Y., Koizumi M. Bull. Chem. Soc. Jpn. 1956;29:373–379.
Parker C. A., Joyce T. A. Photochem. Photobiol. 1973;18:467–474. PubMed
Lee W. E., Galley W. C. Biophys. J. 1988;54:627–635. PubMed PMC
Kurz P., Probst B., Spingler B., Alberto R. Eur. J. Inorg. Chem. 2006;2006:2966–2974.
Pileni M. P., Grätzel M. J. Phys. Chem. 1980;84:2402–2406.
Chakraborty B., Basu S. Chem. Phys. Lett. 2009;477:382–387.
Steckhan E., Herrmann S., Ruppert R., Dietz E., Frede M., Spika E. Organometallics. 1991;10:1568–1577.
Lee S. H., Nam D. H., Kim J. H., Baeg J.-O., Park C. B. ChemBioChem. 2009;10:1621–1624. PubMed
Lee S. H., Nam D. H., Park C. B. Adv. Synth. Catal. 2009;351:2589–2594.
Lo H. C., Leiva C., Buriez O., Kerr J. B., Olmstead M. M., Fish R. H. Inorg. Chem. 2001;40:6705–6716. PubMed
Solar S., Solar W., Getoff N. Z. Naturforsch., A: Phys. Sci. 1982;37:1077–1082.
Oster G., Bellin J. S., Kimball R. W., Schrader M. E. J. Am. Chem. Soc. 1959;81:5095–5099.
Hussein B. H. M. and Goez M., Ph.D. Dissertation, Universität Halle-Wittenberg, Germany, 2005.
Kalyanasundaram K., Dung D. J. Phys. Chem. 1980;84:2551–2556.
Lv H., Guo W., Wu K., Chen Z., Bacsa J., Musaev D. G., Geletii Y. V., Lauinger S. M., Lian T., Hill C. L. J. Am. Chem. Soc. 2014;136:14015–14018. PubMed
Barrett S. M., Pitman C. L., Walden A. G., Miller A. J. M. J. Am. Chem. Soc. 2014;136:14718–14721. PubMed