Structural elaboration of dicyanopyrazine: towards push-pull molecules with tailored photoredox activity
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35530614
PubMed Central
PMC9069489
DOI
10.1039/c9ra04731j
PII: c9ra04731j
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
As an extension of the successful dicyanopyrazine photoredox catalysts, a series of X-shaped push-pull molecules with a systematically altered structure were designed and facilely synthesized; their structure-property relationship was elucidated in detail via experimental as well as theoretical calculations. Dicyanopyrazines are proven to be powerful photoredox catalysts with a push-pull arrangement that allows facile property tuning by interchanging a particular part of the D-π-A system. Changing the mutual position of the cyano acceptors and the methoxy, methylthio and thienyl donors as well as modifying the linker allowed wide tuning of the fundamental properties of the catalysts. Contrary to the currently available organic photoredox catalysts, we provided a series of catalysts based on a pyrazine heterocyclic scaffold with easy synthesis and further modification, diverse photoredox characteristics and wide application potential across modern photoredox transformations. The photoredox catalytic activities of the target catalysts were examined in a benchmark cross-dehydrogenative coupling and novel and challenging annulation reactions.
Zobrazit více v PubMed
Ciamician G. Science. 1912;36:385. doi: 10.1126/science.36.926.385. PubMed DOI
Nicewicz D. A. MacMillan D. W. C. Science. 2008;322:77. doi: 10.1126/science.1161976. PubMed DOI PMC
Stephenson C. Yoon T. Acc. Chem. Res. 2016;49:2059. doi: 10.1021/acs.accounts.6b00502. PubMed DOI
Lechner B. König B. Synthesis. 2010:1712.
Ghosh T. Slanina T. König B. Chem. Sci. 2015;6:2027. doi: 10.1039/C4SC03709J. PubMed DOI PMC
Ghosh I. Marzo L. Da A. Shaikh E. König B. Acc. Chem. Res. 2016;49:1566. doi: 10.1021/acs.accounts.6b00229. PubMed DOI
Tellis J. C. Primer D. N. Molander G. A. Science. 2014;345:433. doi: 10.1126/science.1253647. PubMed DOI PMC
Johnston C. P. T Smith R. Allmendinger S. MacMillan D. W. C. Nature. 2016;536:322. doi: 10.1038/nature19056. PubMed DOI PMC
Majek M. Von Wangelin A. Chem. Commun. 2013;49:5507. doi: 10.1039/C3CC41867G. PubMed DOI
Corcoran E. B. Pirnot M. T. Lin S. Dreher S. D. DiRocco D. A. Davies I. W. Buchwald S. L. MacMillan D. W. C. Science. 2016;353:279. doi: 10.1126/science.aag0209. PubMed DOI PMC
Terrett J. A. Cuthbertson J. D. Shurtleff V. W. MacMillan D. W. C. Science. 2015;524:330. PubMed PMC
Shaikh R. S. Düsel S. König B. ACS Catal. 2016;6:8410. doi: 10.1021/acscatal.6b02591. DOI
Yoon T. P. Acc. Chem. Res. 2016;6:8410. PubMed PMC
Prier C. K. Rankic D. A. MacMillan D. W. C. Chem. Rev. 2013;113:5322. doi: 10.1021/cr300503r. PubMed DOI PMC
He Y. Wu H. Toste F. D. Chem. Sci. 2015;6:1194. doi: 10.1039/C4SC03092C. PubMed DOI PMC
Patil D. V. Yun H. Shin S. Adv. Synth. Catal. 2015;357:2622. doi: 10.1002/adsc.201500525. DOI
Noble A. McCarver S. J. MacMillan D. W. C. J. Am. Chem. Soc. 2015;137:624. doi: 10.1021/ja511913h. PubMed DOI PMC
Guo W. Lu L. Q. Wang Y. Wang Y. N. Chen J. R. Xiao W. J. Angew. Chem., Int. Ed. 2015;54:2265. doi: 10.1002/anie.201408837. PubMed DOI
Majek M. Von Wangelin A. J. Angew. Chem., Int. Ed. 2015;54:2270. doi: 10.1002/anie.201408516. PubMed DOI
Majek M. Filace F. Von Wangelin A. J. Chem.–Eur. J. 2015;21:4518. doi: 10.1002/chem.201406461. PubMed DOI
Liu H. Feng W. Kee C. W. Zhao Y. Leow D. Pan Y. Tan C. H. Green Chem. 2010;12:953. doi: 10.1039/B924609F. DOI
Heitz D. R. Rizwan K. Molander G. A. J. Org. Chem. 2016;81:7308. doi: 10.1021/acs.joc.6b01207. PubMed DOI PMC
Qin H. T. Wu S. W. Liu J. L. Liu F. Chem. Commun. 2017;53:1696. doi: 10.1039/C6CC10035J. PubMed DOI
McManus J. B. Nicewicz D. A. J. Am. Chem. Soc. 2017;139:2880. doi: 10.1021/jacs.6b12708. PubMed DOI PMC
Gesmundo N. J. Nicewicz D. A. Beilstein J. Org. Chem. 2014;10:1272. doi: 10.3762/bjoc.10.128. PubMed DOI PMC
Becker P. Duhamel T. Stein C. J. Reiher M. Muñiz K. Angew. Chem., Int. Ed. 2017;56:8004. doi: 10.1002/anie.201703611. PubMed DOI PMC
Romero N. A. Nicewicz D. A. Chem. Rev. 2016;116:10075. doi: 10.1021/acs.chemrev.6b00057. PubMed DOI
Zhao Y. Zhang C. Chin K. F. Pytela O. Wei G. Liu H. Bureš F. Jiang Z. RSC Adv. 2014;4:30062. doi: 10.1039/C4RA05525J. DOI
Čermáková H. Kulhánek J. Ludwig M. Kuznik W. Kityk I. V. Mikysek T. Růžička A. Bureš F. Eur. J. Org. Chem. 2012:529.
Dokládalová L. Bureš F. Kuznik W. Kityk I. V. Wojciechowski A. Mikysek T. Almonasy N. Ramaiyan M. Padělková Z. Kulhánek J. Ludwig M. Org. Biomol. Chem. 2014;12:5517. doi: 10.1039/C4OB00901K. PubMed DOI
Condie A. G. Gonzáles-Gómez J. C. Stephenson C. R. J. J. Am. Chem. Soc. 2010;132:1464. doi: 10.1021/ja909145y. PubMed DOI
Liu X. Ye X. Bureš F. Liu H. Jiang Z. Angew. Chem., Int. Ed. 2015;54:11443. doi: 10.1002/anie.201505193. PubMed DOI
Zhang C. Li S. Bureš F. Lee R. Ye X. Jiang Z. ACS Catal. 2016;6:6853. doi: 10.1021/acscatal.6b01969. DOI
Wei G. Zhang C. Bureš F. Ye X. Tan C. H. Jiang Z. ACS Catal. 2016;6:3708. doi: 10.1021/acscatal.6b00846. DOI
Hloušková Z. Tydlitát J. Kong M. Pytela O. Mikysek T. Klikar M. Almonasy N. Dvořák M. Jiang Z. Růžička A. Bureš F. ChemistrySelect. 2018;3:4262. doi: 10.1002/slct.201800719. DOI
Bureš F. RSC Adv. 2014;4:58826. doi: 10.1039/C4RA11264D. DOI
Klikar M. Solanke P. Tydlitát J. Bureš F. Chem. Rec. 2016;16:1886. doi: 10.1002/tcr.201600032. PubMed DOI
Fathalla M. F. Khattab S. H. J. Chem. Soc. Pak. 2011;33:324.
Kinast G. Liebigs Ann. Chem. 1981:1561. doi: 10.1002/jlac.198119810906. DOI
Perchais J. Fleury J. P. Tetrahedron. 1974;30:999. doi: 10.1016/S0040-4020(01)97487-3. DOI
Vázquez Vilarelle D. Peinador Veira C. Quintela López J. M. Tetrahedron. 2004;60:275. doi: 10.1016/j.tet.2003.11.021. DOI
Sato N. Fukuya S. J. Heterocycl. Chem. 2012;49:675. doi: 10.1002/jhet.797. DOI
Shirai K. Yanagisawa A. Takahashi H. Fukunishi K. Matsuoka M. Dyes Pigm. 1998;39:49. doi: 10.1016/S0143-7208(98)00008-4. DOI
Morkved E. H. Ossletten H. Kjosen H. Acta Chem. Scand. 1999;53:1117. doi: 10.3891/acta.chem.scand.53-1117. DOI
Kyowa gas chem ind. Co. ltd., 2,3-Dicyanopyrazines, US Pat. US4259489, 31.3.1981
DuPont de Nemours and Co., Pyrazinderivative und Verfahren zu ihrer Herstellung, Deutches Pat., DE2216925, 6.3.1972
Bird C. W. Tetrahedron. 1986;42:89. doi: 10.1016/S0040-4020(01)87405-6. DOI
Bird C. W. Tetrahedron. 1985;41:1409. doi: 10.1016/S0040-4020(01)96543-3. DOI
Kotelevskii S. I. Prezhdo O. V. Tetrahedron. 2001;57:5715. doi: 10.1016/S0040-4020(01)00485-9. DOI
Krygowski T. M. Szatylowicz H. Stasyuk O. A. Dominikowska J. Palusiak M. Chem. Rev. 2014;114:6383. doi: 10.1021/cr400252h. PubMed DOI
Cvejn D. Michail E. Seintis K. Klikar M. Pytela O. Mikysek T. Almonasy N. Ludwig M. Giannetas V. Fakis M. Bureš F. RSC Adv. 2016;6:12819. doi: 10.1039/C5RA25170B. DOI
Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery Jr J. A., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Keith T., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas O., Foresman J. B., Ortiz J. V., Cioslowski J., and Fox D. J., Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2013
Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Petersson G. A., Nakatsuji H., Li X., Caricato M., Marenich A. V., Bloino J., Janesko B. G., Gomperts R., Mennucci B., Hratchian H. P., Ortiz J. V., Izmaylov A. F., Sonnenberg J. L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V. G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery Jr J. A., Peralta J. E., Ogliaro F., Bearpark M. J., Heyd J. J., Brothers E. N., Kudin K. N., Staroverov V. N., Keith T. A., Kobayashi R., Normand J., Raghavachari K., Rendell A. P., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Millam J. M., Klene M., Adamo C., Cammi R., Ochterski J. W., Martin R. L., Morokuma K., Farkas O., Foresman J. B., and Fox D. J., Gaussian 16, Revision A.03, Gaussian, Inc., Wallingford CT, 2016
Koopmans T. Physica. 1934;1:104. doi: 10.1016/S0031-8914(34)90011-2. DOI
Pytela O., OPStat, version 6.10, 2019, http://bures.upce.cz/OPgm
Murata S. Teramoto K. Miura M. Nomura M. Heterocycles. 1993;36:2147. doi: 10.3987/COM-93-6436. DOI
Wang Z. J. Ghasimi S. Landfester K. Zhang K. I. Adv. Synth. Catal. 2016;358:2576. doi: 10.1002/adsc.201600125. DOI
Sharma K. Das B. Gogoi P. New J. Chem. 2018;42:18894. doi: 10.1039/C8NJ04443K. DOI
Hosseini-Sarvari M. Koohgard M. Firoozi S. Mohajeri A. Tavakolian H. New J. Chem. 2018;42:6880. doi: 10.1039/C8NJ00476E. DOI
Firoozi S. Hosseini-Sarvari M. Koohgard M. Green Chem. 2018;20:5540. doi: 10.1039/C8GC03297A. DOI
Yang X. L. Guo J. D. Lei T. Chen B. Tung C. H. Wu L. Z. Org. Lett. 2018;20:2916. doi: 10.1021/acs.orglett.8b00977. PubMed DOI
Hsu C. W. Sundén H. Org. Lett. 2018;20:2051. doi: 10.1021/acs.orglett.8b00597. PubMed DOI
Guo J. T. Yang D. C. Guan Z. He Y. H. J. Org. Chem. 2017;82:1888. doi: 10.1021/acs.joc.6b03034. PubMed DOI
Yadav A. K. Yadav L. D. S. Tetrahedron Lett. 2017;58:552. doi: 10.1016/j.tetlet.2016.12.077. DOI
Yadav A. K. Yadav L. D. S. Tetrahedron Lett. 2016;57:1489. doi: 10.1016/j.tetlet.2016.02.078. DOI
Benniston A. C. Harriman A. Li P. Rostron P. van Ramesdonk H. J. Groeneveld M. M. Zhang H. Verhoeven J. W. J. Am. Chem. Soc. 2005;127:16054. doi: 10.1021/ja052967e. PubMed DOI
Zhang X. F. Zhang I. Liu L. Photochem. Photobiol. 2010;86:492. doi: 10.1111/j.1751-1097.2010.00706.x. PubMed DOI
Palluotto F. Sosic A. Pinato O. Zoidis G. Catto M. Sissi C. Gatto B. Carotti A. Eur. J. Med. Chem. 2016;123:704. doi: 10.1016/j.ejmech.2016.07.063. PubMed DOI
Bare T. M., Chapdelaine M. J., Davenport T. W., Empfield J. R., Garcia-Davenport L. E., Jackson P. F., McKinney J. A., McLaren C. D., Sparks R. B., US Pat., US6214826, 8.2.1999