Structural elaboration of dicyanopyrazine: towards push-pull molecules with tailored photoredox activity

. 2019 Jul 29 ; 9 (41) : 23797-23809. [epub] 20190731

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35530614

As an extension of the successful dicyanopyrazine photoredox catalysts, a series of X-shaped push-pull molecules with a systematically altered structure were designed and facilely synthesized; their structure-property relationship was elucidated in detail via experimental as well as theoretical calculations. Dicyanopyrazines are proven to be powerful photoredox catalysts with a push-pull arrangement that allows facile property tuning by interchanging a particular part of the D-π-A system. Changing the mutual position of the cyano acceptors and the methoxy, methylthio and thienyl donors as well as modifying the linker allowed wide tuning of the fundamental properties of the catalysts. Contrary to the currently available organic photoredox catalysts, we provided a series of catalysts based on a pyrazine heterocyclic scaffold with easy synthesis and further modification, diverse photoredox characteristics and wide application potential across modern photoredox transformations. The photoredox catalytic activities of the target catalysts were examined in a benchmark cross-dehydrogenative coupling and novel and challenging annulation reactions.

Zobrazit více v PubMed

Ciamician G. Science. 1912;36:385. doi: 10.1126/science.36.926.385. PubMed DOI

Nicewicz D. A. MacMillan D. W. C. Science. 2008;322:77. doi: 10.1126/science.1161976. PubMed DOI PMC

Stephenson C. Yoon T. Acc. Chem. Res. 2016;49:2059. doi: 10.1021/acs.accounts.6b00502. PubMed DOI

Lechner B. König B. Synthesis. 2010:1712.

Ghosh T. Slanina T. König B. Chem. Sci. 2015;6:2027. doi: 10.1039/C4SC03709J. PubMed DOI PMC

Ghosh I. Marzo L. Da A. Shaikh E. König B. Acc. Chem. Res. 2016;49:1566. doi: 10.1021/acs.accounts.6b00229. PubMed DOI

Tellis J. C. Primer D. N. Molander G. A. Science. 2014;345:433. doi: 10.1126/science.1253647. PubMed DOI PMC

Johnston C. P. T Smith R. Allmendinger S. MacMillan D. W. C. Nature. 2016;536:322. doi: 10.1038/nature19056. PubMed DOI PMC

Majek M. Von Wangelin A. Chem. Commun. 2013;49:5507. doi: 10.1039/C3CC41867G. PubMed DOI

Corcoran E. B. Pirnot M. T. Lin S. Dreher S. D. DiRocco D. A. Davies I. W. Buchwald S. L. MacMillan D. W. C. Science. 2016;353:279. doi: 10.1126/science.aag0209. PubMed DOI PMC

Terrett J. A. Cuthbertson J. D. Shurtleff V. W. MacMillan D. W. C. Science. 2015;524:330. PubMed PMC

Shaikh R. S. Düsel S. König B. ACS Catal. 2016;6:8410. doi: 10.1021/acscatal.6b02591. DOI

Yoon T. P. Acc. Chem. Res. 2016;6:8410. PubMed PMC

Prier C. K. Rankic D. A. MacMillan D. W. C. Chem. Rev. 2013;113:5322. doi: 10.1021/cr300503r. PubMed DOI PMC

He Y. Wu H. Toste F. D. Chem. Sci. 2015;6:1194. doi: 10.1039/C4SC03092C. PubMed DOI PMC

Patil D. V. Yun H. Shin S. Adv. Synth. Catal. 2015;357:2622. doi: 10.1002/adsc.201500525. DOI

Noble A. McCarver S. J. MacMillan D. W. C. J. Am. Chem. Soc. 2015;137:624. doi: 10.1021/ja511913h. PubMed DOI PMC

Guo W. Lu L. Q. Wang Y. Wang Y. N. Chen J. R. Xiao W. J. Angew. Chem., Int. Ed. 2015;54:2265. doi: 10.1002/anie.201408837. PubMed DOI

Majek M. Von Wangelin A. J. Angew. Chem., Int. Ed. 2015;54:2270. doi: 10.1002/anie.201408516. PubMed DOI

Majek M. Filace F. Von Wangelin A. J. Chem.–Eur. J. 2015;21:4518. doi: 10.1002/chem.201406461. PubMed DOI

Liu H. Feng W. Kee C. W. Zhao Y. Leow D. Pan Y. Tan C. H. Green Chem. 2010;12:953. doi: 10.1039/B924609F. DOI

Heitz D. R. Rizwan K. Molander G. A. J. Org. Chem. 2016;81:7308. doi: 10.1021/acs.joc.6b01207. PubMed DOI PMC

Qin H. T. Wu S. W. Liu J. L. Liu F. Chem. Commun. 2017;53:1696. doi: 10.1039/C6CC10035J. PubMed DOI

McManus J. B. Nicewicz D. A. J. Am. Chem. Soc. 2017;139:2880. doi: 10.1021/jacs.6b12708. PubMed DOI PMC

Gesmundo N. J. Nicewicz D. A. Beilstein J. Org. Chem. 2014;10:1272. doi: 10.3762/bjoc.10.128. PubMed DOI PMC

Becker P. Duhamel T. Stein C. J. Reiher M. Muñiz K. Angew. Chem., Int. Ed. 2017;56:8004. doi: 10.1002/anie.201703611. PubMed DOI PMC

Romero N. A. Nicewicz D. A. Chem. Rev. 2016;116:10075. doi: 10.1021/acs.chemrev.6b00057. PubMed DOI

Zhao Y. Zhang C. Chin K. F. Pytela O. Wei G. Liu H. Bureš F. Jiang Z. RSC Adv. 2014;4:30062. doi: 10.1039/C4RA05525J. DOI

Čermáková H. Kulhánek J. Ludwig M. Kuznik W. Kityk I. V. Mikysek T. Růžička A. Bureš F. Eur. J. Org. Chem. 2012:529.

Dokládalová L. Bureš F. Kuznik W. Kityk I. V. Wojciechowski A. Mikysek T. Almonasy N. Ramaiyan M. Padělková Z. Kulhánek J. Ludwig M. Org. Biomol. Chem. 2014;12:5517. doi: 10.1039/C4OB00901K. PubMed DOI

Condie A. G. Gonzáles-Gómez J. C. Stephenson C. R. J. J. Am. Chem. Soc. 2010;132:1464. doi: 10.1021/ja909145y. PubMed DOI

Liu X. Ye X. Bureš F. Liu H. Jiang Z. Angew. Chem., Int. Ed. 2015;54:11443. doi: 10.1002/anie.201505193. PubMed DOI

Zhang C. Li S. Bureš F. Lee R. Ye X. Jiang Z. ACS Catal. 2016;6:6853. doi: 10.1021/acscatal.6b01969. DOI

Wei G. Zhang C. Bureš F. Ye X. Tan C. H. Jiang Z. ACS Catal. 2016;6:3708. doi: 10.1021/acscatal.6b00846. DOI

Hloušková Z. Tydlitát J. Kong M. Pytela O. Mikysek T. Klikar M. Almonasy N. Dvořák M. Jiang Z. Růžička A. Bureš F. ChemistrySelect. 2018;3:4262. doi: 10.1002/slct.201800719. DOI

Bureš F. RSC Adv. 2014;4:58826. doi: 10.1039/C4RA11264D. DOI

Klikar M. Solanke P. Tydlitát J. Bureš F. Chem. Rec. 2016;16:1886. doi: 10.1002/tcr.201600032. PubMed DOI

Fathalla M. F. Khattab S. H. J. Chem. Soc. Pak. 2011;33:324.

Kinast G. Liebigs Ann. Chem. 1981:1561. doi: 10.1002/jlac.198119810906. DOI

Perchais J. Fleury J. P. Tetrahedron. 1974;30:999. doi: 10.1016/S0040-4020(01)97487-3. DOI

Vázquez Vilarelle D. Peinador Veira C. Quintela López J. M. Tetrahedron. 2004;60:275. doi: 10.1016/j.tet.2003.11.021. DOI

Sato N. Fukuya S. J. Heterocycl. Chem. 2012;49:675. doi: 10.1002/jhet.797. DOI

Shirai K. Yanagisawa A. Takahashi H. Fukunishi K. Matsuoka M. Dyes Pigm. 1998;39:49. doi: 10.1016/S0143-7208(98)00008-4. DOI

Morkved E. H. Ossletten H. Kjosen H. Acta Chem. Scand. 1999;53:1117. doi: 10.3891/acta.chem.scand.53-1117. DOI

Kyowa gas chem ind. Co. ltd., 2,3-Dicyanopyrazines, US Pat. US4259489, 31.3.1981

DuPont de Nemours and Co., Pyrazinderivative und Verfahren zu ihrer Herstellung, Deutches Pat., DE2216925, 6.3.1972

Bird C. W. Tetrahedron. 1986;42:89. doi: 10.1016/S0040-4020(01)87405-6. DOI

Bird C. W. Tetrahedron. 1985;41:1409. doi: 10.1016/S0040-4020(01)96543-3. DOI

Kotelevskii S. I. Prezhdo O. V. Tetrahedron. 2001;57:5715. doi: 10.1016/S0040-4020(01)00485-9. DOI

Krygowski T. M. Szatylowicz H. Stasyuk O. A. Dominikowska J. Palusiak M. Chem. Rev. 2014;114:6383. doi: 10.1021/cr400252h. PubMed DOI

Cvejn D. Michail E. Seintis K. Klikar M. Pytela O. Mikysek T. Almonasy N. Ludwig M. Giannetas V. Fakis M. Bureš F. RSC Adv. 2016;6:12819. doi: 10.1039/C5RA25170B. DOI

Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery Jr J. A., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Keith T., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas O., Foresman J. B., Ortiz J. V., Cioslowski J., and Fox D. J., Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2013

Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Petersson G. A., Nakatsuji H., Li X., Caricato M., Marenich A. V., Bloino J., Janesko B. G., Gomperts R., Mennucci B., Hratchian H. P., Ortiz J. V., Izmaylov A. F., Sonnenberg J. L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V. G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery Jr J. A., Peralta J. E., Ogliaro F., Bearpark M. J., Heyd J. J., Brothers E. N., Kudin K. N., Staroverov V. N., Keith T. A., Kobayashi R., Normand J., Raghavachari K., Rendell A. P., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Millam J. M., Klene M., Adamo C., Cammi R., Ochterski J. W., Martin R. L., Morokuma K., Farkas O., Foresman J. B., and Fox D. J., Gaussian 16, Revision A.03, Gaussian, Inc., Wallingford CT, 2016

Koopmans T. Physica. 1934;1:104. doi: 10.1016/S0031-8914(34)90011-2. DOI

Pytela O., OPStat, version 6.10, 2019, http://bures.upce.cz/OPgm

Murata S. Teramoto K. Miura M. Nomura M. Heterocycles. 1993;36:2147. doi: 10.3987/COM-93-6436. DOI

Wang Z. J. Ghasimi S. Landfester K. Zhang K. I. Adv. Synth. Catal. 2016;358:2576. doi: 10.1002/adsc.201600125. DOI

Sharma K. Das B. Gogoi P. New J. Chem. 2018;42:18894. doi: 10.1039/C8NJ04443K. DOI

Hosseini-Sarvari M. Koohgard M. Firoozi S. Mohajeri A. Tavakolian H. New J. Chem. 2018;42:6880. doi: 10.1039/C8NJ00476E. DOI

Firoozi S. Hosseini-Sarvari M. Koohgard M. Green Chem. 2018;20:5540. doi: 10.1039/C8GC03297A. DOI

Yang X. L. Guo J. D. Lei T. Chen B. Tung C. H. Wu L. Z. Org. Lett. 2018;20:2916. doi: 10.1021/acs.orglett.8b00977. PubMed DOI

Hsu C. W. Sundén H. Org. Lett. 2018;20:2051. doi: 10.1021/acs.orglett.8b00597. PubMed DOI

Guo J. T. Yang D. C. Guan Z. He Y. H. J. Org. Chem. 2017;82:1888. doi: 10.1021/acs.joc.6b03034. PubMed DOI

Yadav A. K. Yadav L. D. S. Tetrahedron Lett. 2017;58:552. doi: 10.1016/j.tetlet.2016.12.077. DOI

Yadav A. K. Yadav L. D. S. Tetrahedron Lett. 2016;57:1489. doi: 10.1016/j.tetlet.2016.02.078. DOI

Benniston A. C. Harriman A. Li P. Rostron P. van Ramesdonk H. J. Groeneveld M. M. Zhang H. Verhoeven J. W. J. Am. Chem. Soc. 2005;127:16054. doi: 10.1021/ja052967e. PubMed DOI

Zhang X. F. Zhang I. Liu L. Photochem. Photobiol. 2010;86:492. doi: 10.1111/j.1751-1097.2010.00706.x. PubMed DOI

Palluotto F. Sosic A. Pinato O. Zoidis G. Catto M. Sissi C. Gatto B. Carotti A. Eur. J. Med. Chem. 2016;123:704. doi: 10.1016/j.ejmech.2016.07.063. PubMed DOI

Bare T. M., Chapdelaine M. J., Davenport T. W., Empfield J. R., Garcia-Davenport L. E., Jackson P. F., McKinney J. A., McLaren C. D., Sparks R. B., US Pat., US6214826, 8.2.1999

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...