Variations in the practice of molecular radiotherapy and implementation of dosimetry: results from a European survey
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
16464
Cancer Research UK - United Kingdom
PubMed
29199391
PubMed Central
PMC5712507
DOI
10.1186/s40658-017-0193-4
PII: 10.1186/s40658-017-0193-4
Knihovny.cz E-zdroje
- Klíčová slova
- Dosimetry, European survey, Molecular radiotherapy, Radionuclide therapy, Radiopharmaceutical therapy,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Currently, the implementation of dosimetry in molecular radiotherapy (MRT) is not well investigated, and in view of the Council Directive (2013/59/Euratom), there is a need to understand the current availability of dosimetry-based MRT in clinical practice and research studies. The aim of this study was to assess the current practice of MRT and dosimetry across European countries. METHODS: An electronic questionnaire was distributed to European countries. This addressed 18 explicitly considered therapies, and for each therapy, a similar set of questions were included. Questions covered the number of patients and treatments during 2015, involvement of medical specialties and medical physicists, implementation of absorbed dose planning, post-therapy imaging and dosimetry, and the basis of therapy prescription. RESULTS: Responses were obtained from 26 countries and 208 hospitals, administering in total 42,853 treatments. The most common therapies were 131I-NaI for benign thyroid diseases and thyroid ablation of adults. The involvement of a medical physicist (mean over all 18 therapies) was reported to be either minority or never by 32% of the responders. The percentage of responders that reported that dosimetry was included on an always/majority basis differed between the therapies and showed a median value of 36%. The highest percentages were obtained for 177Lu-PSMA therapy (100%), 90Y microspheres of glass (84%) and resin (82%), 131I-mIBG for neuroblastoma (59%), and 131I-NaI for benign thyroid diseases (54%). The majority of therapies were prescribed based on fixed-activity protocols. The highest number of absorbed-dose based prescriptions were reported for 90Y microsphere treatments in the liver (64% and 96% of responses for resin and glass, respectively), 131I-NaI treatment of benign thyroid diseases (38% of responses), and for 131I-mIBG treatment of neuroblastoma (18% of responses). CONCLUSIONS: There is a wide variation in MRT practice across Europe and for different therapies, including the extent of medical-physicist involvement and the implementation of dosimetry-guided treatments.
Department of Diagnostic Physics Oslo University Hospital Oslo Norway
Department of Medical Physics Pammakaristos Hospital Athens Greece
Department of Medical Radiation Physics Clinical Sciences Lund Lund University Lund Sweden
Department of Nuclear Medicine and PET Center University Hospital Ghent Belgium
Department of Nuclear Medicine Erasmus MC Rotterdam The Netherlands
Department of Surgical Sciences Radiology Uppsala University Hospital Uppsala Sweden
Joint Department of Physics Royal Marsden Hospital and Institute of Cancer Research Sutton UK
Nuclear Medicine Division Foundation IRCCS Istituto Nazionale Tumori Milan Italy
School of Engineering Cardiff University Cardiff UK
The Christie NHS Foundation Trust Nuclear Medicine Manchester UK
Zobrazit více v PubMed
Lawrence JH. Nuclear physics and therapy: preliminary report on a new method for the treatment of leukemia and polycythemia. Radiology. 1940;35:51–60. doi: 10.1148/35.1.51. DOI
Council Directive 2013/59/Euratom. Off J Eur Union. 2014;57 doi: 10.3000/19770677.L_2014.013.eng.
Hoefnagel CA, Clarke SE, Fischer M, Chatal JF, Lewington VJ, Nilsson S, et al. Radionuclide therapy practice and facilities in Europe. EANM Radionuclide Therapy Committee. Eur J Nucl Med. 1999;26:277–282. doi: 10.1007/s002590050389. PubMed DOI
Rojas B, Hooker C, McGowan DR, Guy MJ, Tipping J. Eight years of growth and change in UK molecular radiotherapy with implications for the future: Internal Dosimetry Users Group survey results from 2007 to 2015. Nucl Med Commun. 2017;38:201–204. doi: 10.1097/MNM.0000000000000642. PubMed DOI
Lorenz R, Buck A, Reiners C. Stationäre nuklearmedizinische Therapie 2010 bis 2012 in Deutschland. Nuklearmedizin. 2015;54:61–8. https://doi.org/10.3413/Nukmed-0725-15-02. PubMed DOI
Paez D, Becic T, Bhonsle U, Jalilian AR, Nunez-Miller R, Osso JA., Jr Current status of nuclear medicine practice in the Middle East. Semin Nucl Med. 2016;46:265–272. doi: 10.1053/j.semnuclmed.2016.01.005. PubMed DOI
Grau C, Defourny N, Malicki J, Dunscombe P, Borras JM, Coffey M, et al. Radiotherapy equipment and departments in the European countries: final results from the ESTRO-HERO survey. Radiother Oncol. 2014;112:155–164. doi: 10.1016/j.radonc.2014.08.029. PubMed DOI
Nilsson S, Franzen L, Parker C, Tyrrell C, Blom R, Tennvall J, et al. Bone-targeted radium-223 in symptomatic, hormone-refractory prostate cancer: a randomised, multicentre, placebo-controlled phase II study. Lancet Oncol. 2007;8:587–594. doi: 10.1016/S1470-2045(07)70147-X. PubMed DOI
Pacilio M, Cassano B, Chiesa C, Giancola S, Ferrari M, Pettinato C, et al. The Italian multicentre dosimetric study for lesion dosimetry in 223Ra therapy of bone metastases: calibration protocol of gamma cameras and patient eligibility criteria. Phys Med. 2016;32:1731–1737. doi: 10.1016/j.ejmp.2016.09.013. PubMed DOI
Chittenden SJ, Hindorf C, Parker CC, Lewington VJ, Pratt BE, Johnson B, et al. A phase 1, open-label study of the biodistribution, pharmacokinetics, and dosimetry of 223Ra-dichloride in patients with hormone-refractory prostate cancer and skeletal metastases. J Nucl Med. 2015;56:1304–1309. doi: 10.2967/jnumed.115.157123. PubMed DOI
Hindorf C, Chittenden S, Aksnes AK, Parker C, Flux GD. Quantitative imaging of 223Ra-chloride (Alpharadin) for targeted alpha-emitting radionuclide therapy of bone metastases. Nucl Med Commun. 2012;33:726–732. doi: 10.1097/MNM.0b013e328353bb6e. PubMed DOI
Ljungberg M, Celler A, Konijnenberg MW, Eckerman KF, Dewaraja YK, Sjogreen-Gleisner K. MIRD pamphlet no. 26: joint EANM/MIRD guidelines for quantitative 177Lu SPECT applied for dosimetry of radiopharmaceutical therapy. J Nucl Med. 2016;57:151–162. doi: 10.2967/jnumed.115.159012. PubMed DOI
Van Binnebeek S, Baete K, Vanbilloen B, Terwinghe C, Koole M, Mottaghy FM, et al. Individualized dosimetry-based activity reduction of (9)(0)Y-DOTATOC prevents severe and rapid kidney function deterioration from peptide receptor radionuclide therapy. Eur J Nucl Med Mol Imaging. 2014;41:1141–1157. PubMed
Cremonesi M, Chiesa C, Strigari L, Ferrari M, Botta F, Guerriero F, et al. Radioembolization of hepatic lesions from a radiobiology and dosimetric perspective. Front Oncol. 2014;4:210. doi: 10.3389/fonc.2014.00210. PubMed DOI PMC
Minguez P, Flux G, Genolla J, Delgado A, Rodeno E, Gleisner KS. Whole-remnant and maximum-voxel SPECT/CT dosimetry in I-131-NaI treatments of differentiated thyroid cancer. Med Phys. 2016;43 doi: 10.1118/1.4961742. PubMed
Barone R, Borson-Chazot F, Valkema R, Walrand S, Chauvin F, Gogou L, et al. Patient-specific dosimetry in predicting renal toxicity with (90)Y-DOTATOC: relevance of kidney volume and dose rate in finding a dose-effect relationship. J Nucl Med. 2005;46(Suppl 1):99S–106S. PubMed
Strigari L, Sciuto R, Rea S, Carpanese L, Pizzi G, Soriani A, et al. Efficacy and toxicity related to treatment of hepatocellular carcinoma with 90Y-SIR spheres: radiobiologic considerations. J Nucl Med. 2010;51:1377–1385. doi: 10.2967/jnumed.110.075861. PubMed DOI
Pauwels S, Barone R, Walrand S, Borson-Chazot F, Valkema R, Kvols LK, et al. Practical dosimetry of peptide receptor radionuclide therapy with (90)Y-labeled somatostatin analogs. J Nucl Med. 2005;46(Suppl 1):92S–98S. PubMed
Ilan E, Sandstrom M, Wassberg C, Sundin A, Garske-Roman U, Eriksson B, et al. Dose response of pancreatic neuroendocrine tumors treated with peptide receptor radionuclide therapy using 177Lu-DOTATATE. J Nucl Med. 2015;56:177–182. doi: 10.2967/jnumed.114.148437. PubMed DOI
Strigari L, Konijnenberg M, Chiesa C, Bardies M, Du Y, Gleisner KS, et al. The evidence base for the use of internal dosimetry in the clinical practice of molecular radiotherapy. Eur J Nucl Med Mol Imaging. 2014;41:1976–1988. doi: 10.1007/s00259-014-2824-5. PubMed DOI
Wierts R, Brans B, Havekes B, Kemerink GJ, Halders SG, Schaper NN, et al. Dose-response relationship in differentiated thyroid cancer patients undergoing radioiodine treatment assessed by means of 124I PET/CT. J Nucl Med. 2016;57:1027–1032. doi: 10.2967/jnumed.115.168799. PubMed DOI
Dewaraja YK, Schipper MJ, Shen J, Smith LB, Murgic J, Savas H, et al. Tumor-absorbed dose predicts progression-free survival following (131)I-tositumomab radioimmunotherapy. J Nucl Med. 2014;55:1047–1053. doi: 10.2967/jnumed.113.136044. PubMed DOI PMC
Jonsson H, Mattsson S. Excess radiation absorbed doses from non-optimised radioiodine treatment of hyperthyroidism. Radiat Prot Dosim. 2004;108:107–114. doi: 10.1093/rpd/nch013. PubMed DOI
Chiesa C, Mira M, Maccauro M, Spreafico C, Romito R, Morosi C, et al. Radioembolization of hepatocarcinoma with (90)Y glass microspheres: development of an individualized treatment planning strategy based on dosimetry and radiobiology. Eur J Nucl Med Mol Imaging. 2015;42:1718–1738. doi: 10.1007/s00259-015-3068-8. PubMed DOI
Sandstrom M, Garske-Roman U, Granberg D, Johansson S, Widstrom C, Eriksson B, et al. Individualized dosimetry of kidney and bone marrow in patients undergoing 177Lu-DOTA-octreotate treatment. J Nucl Med. 2013;54:33–41. doi: 10.2967/jnumed.112.107524. PubMed DOI
Sundlov A, Sjogreen-Gleisner K, Svensson J, Ljungberg M, Olsson T, Bernhardt P, et al. Individualised 177Lu-DOTATATE treatment of neuroendocrine tumours based on kidney dosimetry. Eur J Nucl Med Mol Imaging. 2017; doi: 10.1007/s00259-017-3678-4. PubMed PMC
Buckley SE, Chittenden SJ, Saran FH, Meller ST, Flux GD. Whole-body dosimetry for individualized treatment planning of 131I-MIBG radionuclide therapy for neuroblastoma. J Nucl Med. 2009;50:1518–1524. doi: 10.2967/jnumed.109.064469. PubMed DOI
Verburg FA, Hanscheid H, Biko J, Hategan MC, Lassmann M, Kreissl MC, et al. Dosimetry-guided high-activity (131)I therapy in patients with advanced differentiated thyroid carcinoma: initial experience. Eur J Nucl Med Mol Imaging. 2010;37:896–903. doi: 10.1007/s00259-009-1303-x. PubMed DOI
Maxon HR, 3rd, Englaro EE, Thomas SR, Hertzberg VS, Hinnefeld JD, Chen LS, et al. Radioiodine-131 therapy for well-differentiated thyroid cancer—a quantitative radiation dosimetric approach: outcome and validation in 85 patients. J Nucl Med. 1992;33:1132–1136. PubMed