One-plasmid double-expression His-tag system for rapid production and easy purification of MS2 phage-like particles
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29235545
PubMed Central
PMC5727534
DOI
10.1038/s41598-017-17951-5
PII: 10.1038/s41598-017-17951-5
Knihovny.cz E-zdroje
- MeSH
- Levivirus * chemie genetika metabolismus MeSH
- plazmidy * genetika metabolismus MeSH
- rekombinantní fúzní proteiny * biosyntéza chemie genetika izolace a purifikace MeSH
- virion * chemie genetika izolace a purifikace metabolismus MeSH
- virové plášťové proteiny * biosyntéza chemie genetika izolace a purifikace MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- rekombinantní fúzní proteiny * MeSH
- virové plášťové proteiny * MeSH
MS2 phage-like particles (MS2 PLP) are artificially constructed pseudo-viral particles derived from bacteriophage MS2. They are able to carry a specific single stranded RNA (ssRNA) sequence of choice inside their capsid, thus protecting it against the effects of ubiquitous nucleases. Such particles are able to mimic ssRNA viruses and, thus, may serve as the process control for molecular detection and quantification of such agents in several kinds of matrices, vaccines and vaccine candidates, drug delivery systems, and systems for the display of immunologically active peptides or nanomachines. Currently, there are several different in vivo plasmid-driven packaging systems for production of MS2 PLP. In order to combine all the advantages of the available systems and to upgrade and simplify the production and purification of MS2 PLP, a one-plasmid double-expression His-tag system was designed. The described system utilizes a unique fusion insertional mutation enabling purification of particles using His-tag affinity. Using this new production system, highly pure MS2 PLP can be quickly produced and purified by a fast performance liquid chromatography (FPLC) approach. The system can be easily adapted to produce other MS2 PLP with different properties.
Zobrazit více v PubMed
Davis JE, Sinsheimer RL, Strauss JH. Bacteriophage MS2 - another RNA phage. Science. 1961;134:1427–&.
Pasloske BL, Walkerpeach CR, Obermoeller RD, Winkler M, DuBois DB. Armored RNA technology for production of ribonuclease-resistant viral RNA controls and standards. Journal of Clinical Microbiology. 1998;36:3590–3594. PubMed PMC
DuBois, D. B., Winkler, M. M. & Pasloske, B. L. Ribonuclease resistant viral RNA standards. U.S. patent 5,677,124. US 5,677,124 (1997).
Pickett GG, Peabody DS. Encapsidation of heterologous RNAs by bacteriophage-MS2 coat protein. Nucleic Acids Research. 1993;21:4621–4626. doi: 10.1093/nar/21.19.4621. PubMed DOI PMC
WalkerPeach CR, Winkler M, DuBois DB, Pasloske BL. Ribonuclease-resistant RNA controls (armored RNA) for reverse transcription-PCR, branched DNA, and genotyping assays for hepatitis C virus. Clinical Chemistry. 1999;45:2079–2085. PubMed
Beld M, et al. Highly sensitive assay for detection of enterovirus in clinical specimens by reverse transcription-PCR with an armored RNA internal control. Journal of Clinical Microbiology. 2004;42:3059–3064. doi: 10.1128/jcm.42.7.3059-3064.2004. PubMed DOI PMC
Meng, S. & Li, J. A novel duplex real-time reverse transcriptase-polymerase chain reaction assay for the detection of hepatitis C viral RNA with armored RNA as internal control. Virology Journal7, 10.1186/1743-422x-7-117 (2010). PubMed PMC
Mikel, P. et al. Preparation of MS2 Phage-Like Particles and Their Use As Potential Process Control Viruses for Detection and Quantification of Enteric RNA Viruses in Different Matrices. Frontiers in Microbiology7, 10.3389/fmicb.2016.01911 (2016). PubMed PMC
Pumpens P, et al. The True Story and Advantages of RNA Phage Capsids as Nanotools. Intervirology. 2016;59:74–110. doi: 10.1159/000449503. PubMed DOI
Mikel P, Vasickova P, Kralik P. Methods for Preparation of MS2 Phage-Like Particles and Their Utilization as Process Control Viruses in RT-PCR and qRT-PCR Detection of RNA Viruses From Food Matrices and Clinical Specimens. Food and Environmental Virology. 2015;7:96–111. doi: 10.1007/s12560-015-9188-2. PubMed DOI PMC
Zhan S, et al. Armored Long RNA Controls or Standards for Branched DNA Assay for Detection of Human Immunodeficiency Virus Type 1. Journal of Clinical Microbiology. 2009;47:2571–2576. doi: 10.1128/jcm.00232-09. PubMed DOI PMC
Lin G, et al. Fast preparation of a long chimeric armored RNA as controls for external quality assessment for molecular detection of Zika virus. Clinica Chimica Acta. 2017;466:138–144. doi: 10.1016/j.cca.2017.01.023. PubMed DOI
Cheng YJ, Niu JJ, Zhang YY, Huang JW, Li QG. Preparation of His-tagged armored RNA phage particles as a control for real-time reverse transcription-PCR detection of severe acute respiratory syndrome coronavirus. Journal of Clinical Microbiology. 2006;44:3557–3561. doi: 10.1128/jcm.00713-06. PubMed DOI PMC
Mastico RA, Talbot SJ, Stockley PG. Multiple presentation of foreign peptides on the surface of an RNA-free spherical bacteriophage capsid. Journal of General Virology. 1993;74:541–548. doi: 10.1099/0022-1317-74-4-541. PubMed DOI
Liu Y, et al. Simultaneous Detection of Seven Enteric Viruses Associated with Acute Gastroenteritis by a Multiplexed Luminex-Based Assay. Journal of Clinical Microbiology. 2012;50:2384–2389. doi: 10.1128/jcm.06790-11. PubMed DOI PMC
Ponchon Luc, Catala Marjorie, Seijo Bili, El Khouri Marguerite, Dardel Frédéric, Nonin-Lecomte Sylvie, Tisné Carine. Co-expression of RNA–protein complexes in Escherichia coli and applications to RNA biology. Nucleic Acids Research. 2013;41(15):e150–e150. doi: 10.1093/nar/gkt576. PubMed DOI PMC
O’Rourke JP, Peabody DS, Chackerian B. Affinity selection of epitope-based vaccines using a bacteriophage virus-like particle platform. Current Opinion in Virology. 2015;11:76–82. doi: 10.1016/j.coviro.2015.03.005. PubMed DOI PMC
Peabody DS, Lim F. Complementation of RNA binding site mutations in MS2 coat protein heterodimers. Nucleic Acids Research. 1996;24:2352–2359. doi: 10.1093/nar/24.12.2352. PubMed DOI PMC
Peabody DS. Subunit fusion confers tolerance to peptide insertions in a virus coat protein. Archives of Biochemistry and Biophysics. 1997;347:85–92. doi: 10.1006/abbi.1997.0312. PubMed DOI
Zhang L, et al. A novel method to produce armored double-stranded DNA by encapsulation of MS2 viral capsids. Applied Microbiology and Biotechnology. 2015;99:7047–7057. doi: 10.1007/s00253-015-6664-4. PubMed DOI PMC
Zhang Dong, Sun Yu, Jia Tingting, Zhang Lei, Wang Guojing, Zhang Rui, Zhang Kuo, Lin Guigao, Xie Jiehong, Wang Lunan, Li Jinming. External Quality Assessment for the Detection of Measles Virus by Reverse Transcription-PCR Using Armored RNA. PLOS ONE. 2015;10(8):e0134681. doi: 10.1371/journal.pone.0134681. PubMed DOI PMC
Sun Y, et al. External Quality Assessment for Avian Influenza A (H7N9) Virus Detection Using Armored RNA. Journal of Clinical Microbiology. 2013;51:4055–4059. doi: 10.1128/jcm.02018-13. PubMed DOI PMC
Sayers JR, Schmidt W, Eckstein F. 5′-3′ Exonucleases in phosphorothioate-based oligonucleotide-directed mutagenesis. Nucleic Acids Research. 1988;16:791–802. doi: 10.1093/nar/16.3.791. PubMed DOI PMC
Li JM, et al. Messenger RNA vaccine based on recombinant MS2 virus-like particles against prostate cancer. International Journal of Cancer. 2014;134:1683–1694. doi: 10.1002/ijc.28482. PubMed DOI
Galaway FA, Stockley PG. MS2 Viruslike Particles: A Robust, Semisynthetic Targeted Drug Delivery Platform. Molecular Pharmaceutics. 2013;10:59–68. doi: 10.1021/mp3003368. PubMed DOI
Sun S, Li W, Sun Y, Pan Y, Li J. A new RNA vaccine platform based on MS2 virus-like particles produced in Saccharomyces cerevisiae. Biochemical and Biophysical Research Communications. 2011;407:124–128. doi: 10.1016/j.bbrc.2011.02.122. PubMed DOI
Wang G, et al. Novel miR-122 delivery system based on MS2 virus like particle surface displaying cell-penetrating peptide TAT for hepatocellular carcinoma. Oncotarget. 2016;7:59402–59416. doi: 10.18632/oncotarget.10681. PubMed DOI PMC
Fu Y, Li J. A novel delivery platform based on Bacteriophage MS2 virus-like particles. Virus Research. 2016;211:9–16. doi: 10.1016/j.virusres.2015.08.022. PubMed DOI PMC
Plevka P, Tars K, Liljas L. Structure and stability of icosahedral particles of a covalent coat protein dimer of bacteriophage MS2. Protein Science. 2009;18:1653–1661. doi: 10.1002/pro.184. PubMed DOI PMC
Caldeira Jerri C, Peabody David S. Thermal Stability of RNA Phage Virus-Like Particles Displaying Foreign Peptides. Journal of Nanobiotechnology. 2011;9(1):22. doi: 10.1186/1477-3155-9-22. PubMed DOI PMC
Laemmli UK. Cleavage of structural proteins during assembly of head of bacteriophage-T4. Nature. 1970;227:680–&. doi: 10.1038/227680a0. PubMed DOI