Evidence of novel miR-34a-based therapeutic approaches for multiple myeloma treatment

. 2017 Dec 20 ; 7 (1) : 17949. [epub] 20171220

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29263373
Odkazy

PubMed 29263373
PubMed Central PMC5738363
DOI 10.1038/s41598-017-18186-0
PII: 10.1038/s41598-017-18186-0
Knihovny.cz E-zdroje

MiR-34a acts as tumor suppressor microRNA (miRNA) in several cancers, including multiple myeloma (MM), by controlling the expression of target proteins involved in cell cycle, differentiation and apoptosis. Here, we have investigated the combination between miR-34a and γ-secretase inhibitor (γSI), Sirtinol or zoledronic acid (ZOL) in order to enhance the inhibitory action of this miRNA on its canonical targets such as Notch1 and SIRT1, and on Ras/MAPK-dependent pathways. Our data demonstrate that miR-34a synthetic mimics significantly enhance the anti-tumor activity of all the above-mentioned anti-cancer agents in RPMI 8226 MM cells. We found that γSI enhanced miR-34a-dependent anti-tumor effects by activating the extrinsic apoptotic pathway which could overcome the cytoprotective autophagic mechanism. Moreover, the combination between miR-34a and γSI increased the cell surface calreticulin (CRT) expression, that is well known for triggering anti-tumor immunological response. The combination between miR-34a and Sirtinol induced the activation of an intrinsic apoptotic pathway along with increased surface expression of CRT. Regarding ZOL, we found a powerful growth inhibition after enforced miR-34a expression, which was not likely attributable to neither apoptosis nor autophagy modulation. Based on our data, the combination of miR-34a with other anti-cancer agents appears a promising anti-MM strategy deserving further investigation.

Zobrazit více v PubMed

Amodio N, D’Aquila P, Passarino G, Tassone P, Bellizzi D. Epigenetic modifications in multiple myeloma: recent advances on the role of DNA and histone methylation. Expert OpinTher Targets. 2017;21(1):91–101. doi: 10.1080/14728222.2016.1266339. PubMed DOI

Bianch G, Munshi NC. Blood Pathogenesis beyond the cancer clone(s) in multiple myeloma. Blood. 2015;125(20):3049–3058. doi: 10.1182/blood-2014-11-568881. PubMed DOI PMC

Misso G, et al. Emerging pathways as individualized therapeutic target of multiple myeloma. Expert Opin. Biol. Ther. 2013;1:S95–109. doi: 10.1517/14712598.2013.807338. PubMed DOI

Pichiorri F, et al. MicroRNAs regulate critical genes associated with multiple myeloma pathogenesis. Proc Natl AcadSci USA. 2008;105(35):12885–90. doi: 10.1073/pnas.0806202105. PubMed DOI PMC

Rossi M, et al. From target therapy to miRNA therapeutics of human multiple myeloma: theoretical and technological issues in the evolving scenario. Curr Drug Targets. 2013;14(10):1144–9. doi: 10.2174/13894501113149990186. PubMed DOI

Rossi M, et al. MicroRNA and multiple myeloma: from laboratory findings to translational therapeutic approaches. Curr Pharm Biotechnol. 2014;15(5):459–67. doi: 10.2174/1389201015666140519104743. PubMed DOI

Ambros V. Control of developmental timing in Caenorhabditis elegans. CurrOpin Genet Dev. 2000;10(4):428–33. doi: 10.1016/S0959-437X(00)00108-8. PubMed DOI

Raimondi, L. et al. MicroRNAs: Novel Crossroads between Myeloma Cells and the Bone Marrow Microenvironment. BioMed Research International. 6504593 (2016). PubMed PMC

Amodio N, et al. Therapeutic Targeting ofmiR-29b/HDAC4 Epigenetic Loop in Multiple Myeloma. Mol Cancer Ther. 2016;15(6):1364–75. doi: 10.1158/1535-7163.MCT-15-0985. PubMed DOI

Fulciniti M, et al. miR-23b/SP1/c-myc forms a feed-forward loop supporting multiple myeloma cell growth. Blood Cancer J. 2016;15(6):e380. doi: 10.1038/bcj.2015.106. PubMed DOI PMC

Morelli E, et al. Selective targeting of IRF4 by syntheticmicroRNA-125b-5p mimics induces anti-multiple myeloma activity in vitro and in vivo. Leukemia. 2015;29(11):2173–83. doi: 10.1038/leu.2015.124. PubMed DOI PMC

Di Martino MT, et al. In vivo activity of miR-34a mimics delivered by stable nucleic acid lipid particles (SNALPs) against multiple myeloma. PLoS ONE. 2014;9(2):e90005. doi: 10.1371/journal.pone.0090005. PubMed DOI PMC

Leotta M, et al. A p53-dependent tumor suppressor network is induced by selective miR-125a-5p inhibition in multiple myeloma cells. J Cell Physiol. 2014;229(12):2106–16. doi: 10.1002/jcp.24669. PubMed DOI

Leone E, et al. Targeting miR-21inhibits in vitro and in vivo multiple myeloma cell growth. Clin Cancer Res. 2013;19(8):2096–106. doi: 10.1158/1078-0432.CCR-12-3325. PubMed DOI PMC

Misso G, et al. Mir-34: A New Weapon Against Cancer? MolTher Nucleic Acids. 2014;3:e194. doi: 10.1038/mtna.2014.46. PubMed DOI PMC

Beg MS, et al. Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors. Invest New Drugs. 2017;35(2):180–188. doi: 10.1007/s10637-016-0407-y. PubMed DOI PMC

Scognamiglio, I., et al. Transferrin-conjugated SNALPs encapsulating 2′-O-methylated miR-34a for the treatment of multiple myeloma. Biomed Res Int. 217365 (2014). PubMed PMC

Kopan R, Ilagan MX. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell. 2009;137(2):216–33. doi: 10.1016/j.cell.2009.03.045. PubMed DOI PMC

Roy M, Pear WS, Aster JC. The multifaceted role of Notch in cancer. CurrOpin Genet Dev. 2007;17(1):52–9. doi: 10.1016/j.gde.2006.12.001. PubMed DOI

Reedijk M, et al. High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Res. 2005;65:8530–8537. doi: 10.1158/0008-5472.CAN-05-1069. PubMed DOI

Dickson BC, et al. High-level JAG1 mRNA and protein predict poor outcome in breast cancer. Mod Pathol. 2007;20:685–693. doi: 10.1038/modpathol.3800785. PubMed DOI

Pinnix CC, Herlyn M. The many faces of Notch signaling in skin-derived cells. Pigment Cell Res. 2007;20:458–465. doi: 10.1111/j.1600-0749.2007.00410.x. PubMed DOI

Shih IM, Wang TL. Notch Signaling, γ-Secretase Inhibitors, and Cancer Therapy. Cancer Res. 2007;67:1879–1882. doi: 10.1158/0008-5472.CAN-06-3958. PubMed DOI

Nickoloff BJ, Osborne BA, Miele L. Notch signaling as a therapeutic target in cancer: a new approach to the development of cell fate modifying agents. Oncogene. 2003;22:6598–608. doi: 10.1038/sj.onc.1206758. PubMed DOI

Yamakuchi M, Lowenstein CJ. MiR-34, SIRT1, andp53: The feedback loop. Cell Cycle. 2009;8(5):712–715. doi: 10.4161/cc.8.5.7753. PubMed DOI

Vaziri H, et al. hSIR2 (SIRT1) functions as an NAD-dependent p53 deacetylase. Cell. 2001;107:149–59. doi: 10.1016/S0092-8674(01)00527-X. PubMed DOI

He L, et al. A microRNA component of the p53 tumour suppressor network. Nature. 2007;447:1130–4. doi: 10.1038/nature05939. PubMed DOI PMC

Raver-Shapira N, et al. Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell. 2007;26:731–43. doi: 10.1016/j.molcel.2007.05.017. PubMed DOI

Hu J, Jing H, Lin H. Sirtuin inhibitors as anticancer agents. Future Med Chem. 2014;6(8):945–966. doi: 10.4155/fmc.14.44. PubMed DOI PMC

Ibrahim A, et al. Approval Summary for Zoledronic Acid for Treatment of Multiple Myeloma and Cancer Bone Metastases. Clinical Cancer Research. 2003;9(7):2394–9. PubMed

Rossi M, et al. Molecular targets for the treatment of multiple myeloma. Curr Cancer Drug Targets. 2012;12(7):757–67. doi: 10.2174/156800912802429300. PubMed DOI

Panaretakis T, et al. Mechanisms of pre-apoptotic calreticulin exposure in immunogenic cell death. The EMBO Journal. 2009;28:578–590. doi: 10.1038/emboj.2009.1. PubMed DOI PMC

Tagliaferri P, et al. Promises and Challenges of MicroRNA-based Treatment of Multiple Myeloma. Curr Cancer Drug Targets. 2012;12(7):838–846. doi: 10.2174/156800912802429355. PubMed DOI PMC

Bi, C. & Chng, W. J. MicroRNA: Important Player in the Pathobiology of Multiple Myeloma. Biomed Res Int. 521586 (2014). PubMed PMC

Lionetti M, Agnelli L, Lombardi L, Tassone P, Neri A. MicroRNAs in the pathobiology of multiple myeloma. Curr Cancer Drug Targets. 2012;12(7):823–37. doi: 10.2174/156800912802429274. PubMed DOI

Rodon J, Perez J, Kurzrock R. Combining targeted therapies: practical issues to consider at the bench and bedside. Oncologist. 2010;15:37–50. doi: 10.1634/theoncologist.2009-0117. PubMed DOI PMC

Stebner E, et al. Mir-34a Sensitizes Multiple Myeloma (MM) Cells to the Proteasome Inhibitor Bortezomib. Blood. 2011;118:138. PubMed PMC

Vinall RL, Ripoll AZ, Wang S, Pan CX, deVere White RW. MiR-34a Chemo-Sensitizes Bladder Cancer Cells To Cisplatin Treatment Regardless Of P53-Rb Pathway Status. Int J Cancer. 2012;130(11):2526–2538. doi: 10.1002/ijc.26256. PubMed DOI PMC

Marques SC, et al. High miR-34a expression improves response to doxorubicin in diffuse large B-cell lymphoma. Exp Hematol. 2016;44(4):238–46.e2. doi: 10.1016/j.exphem.2015.12.007. PubMed DOI

Wang X, et al. MicroRNA-34a Sensitizes Lung Cancer Cell Lines to DDP Treatment Independent of p53 Status. Cancer Biotherapy and Radiopharmaceuticals. 2013;28(1):45–50. doi: 10.1089/cbr.2012.1218. PubMed DOI

Olsauskas-Kuprys R, Zlobin A, Osipo C. Gamma secretase inhibitors of Notch signalling. Onco Targets Ther. 2013;6:943–55. PubMed PMC

Fong Y, et al. The antiproliferative and apoptotic effects of sirtinol, a sirtuin inhibitor on human lung cancer cells by modulating Akt/β-catenin-Foxo3a axis. ScientificWorldJournal. 2014;2014:937051. PubMed PMC

Chang J, Wang W, Zhang H, Hu Y, Yin Z. Bisphosphonates regulate cell proliferation, apoptosis and pro-osteoclastic expression in MG-63 human osteosarcoma cells. Oncol Lett. 2012;4(2):299–304. PubMed PMC

Jin Z, El-Deiry WS. Overview of cell death signaling pathways. Cancer Biol Ther. 2005;4:139–63. doi: 10.4161/cbt.4.2.1508. PubMed DOI

Ojha R, Ishaq M, Singh SK. Caspase-mediated crosstalk between autophagy and apoptosis: Mutual adjustment or matter of dominance. J Cancer Res Ther. 2015;11(3):514–24. doi: 10.4103/0973-1482.163695. PubMed DOI

Iriyama N, et al. Plasma cell maturity as a predictor of prognosis in multiple myeloma. Med Oncol. 2016;33(8):87. doi: 10.1007/s12032-016-0803-3. PubMed DOI

Koizumi M, et al. Zoledronate has an antitumor effect and induces actin rearrangement in dexamethasone-resistant myeloma cells. European Journal of Haematology. 2007;79(5):382–91. doi: 10.1111/j.1600-0609.2007.00957.x. PubMed DOI

Barten DM, et al. Gamma-Secretase inhibitors for Alzheimer’s disease: balancing efficacy and toxicity. Drugs RD. 2006;7:87–97. doi: 10.2165/00126839-200607020-00003. PubMed DOI

Cea M, et al. Synergistic interactions between HDAC and sirtuin inhibitors in human leukemia cells. PLoS One. 2011;6(7):e22739. doi: 10.1371/journal.pone.0022739. PubMed DOI PMC

Chauhan D, et al. Preclinical evaluation of a novel SIRT1 modulator SRT1720 in multiple myeloma cells. Br J Haematol. 2011;155(5):588–98. doi: 10.1111/j.1365-2141.2011.08888.x. PubMed DOI PMC

Gürtler A, et al. Stain-Free technology as a normalization tool in Western blot analysis. Anal Biochem. 2013;433(2):105–11. doi: 10.1016/j.ab.2012.10.010. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

miR-125b Upregulates miR-34a and Sequentially Activates Stress Adaption and Cell Death Mechanisms in Multiple Myeloma

. 2019 Jun 07 ; 16 () : 391-406. [epub] 20190313

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...