Rational Design of a New Class of Toll-Like Receptor 4 (TLR4) Tryptamine Related Agonists by Means of the Structure- and Ligand-Based Virtual Screening for Vaccine Adjuvant Discovery
Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
29300367
PubMed Central
PMC6017214
DOI
10.3390/molecules23010102
PII: molecules23010102
Knihovny.cz E-resources
- Keywords
- PRR, TLR4, adjuvants, innate immunity, molecular dynamics, virtual screening,
- MeSH
- Adjuvants, Immunologic chemistry metabolism pharmacology MeSH
- CHO Cells MeSH
- Cricetulus MeSH
- Inhibitory Concentration 50 MeSH
- Interleukin-6 blood MeSH
- Humans MeSH
- Ligands MeSH
- Computer Simulation MeSH
- Surface Plasmon Resonance MeSH
- High-Throughput Screening Assays methods MeSH
- Molecular Dynamics Simulation MeSH
- Molecular Docking Simulation MeSH
- Toll-Like Receptor 4 agonists metabolism MeSH
- Tryptamines chemistry MeSH
- Vaccines MeSH
- Binding Sites MeSH
- Structure-Activity Relationship * MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Adjuvants, Immunologic MeSH
- IL6 protein, human MeSH Browser
- Interleukin-6 MeSH
- Ligands MeSH
- TLR4 protein, human MeSH Browser
- Toll-Like Receptor 4 MeSH
- tryptamine MeSH Browser
- Tryptamines MeSH
- Vaccines MeSH
In order to identify novel lead structures for human toll-like receptor 4 (hTLR4) modulation virtual high throughput screening by a peta-flops-scale supercomputer has been performed. Based on the in silico studies, a series of 12 compounds related to tryptamine was rationally designed to retain suitable molecular geometry for interaction with the hTLR4 binding site as well as to satisfy general principles of drug-likeness. The proposed compounds were synthesized, and tested by in vitro and ex vivo experiments, which revealed that several of them are capable to stimulate hTLR4 in vitro up to 25% activity of Monophosphoryl lipid A. The specific affinity of the in vitro most potent substance was confirmed by surface plasmon resonance direct-binding experiments. Moreover, two compounds from the series show also significant ability to elicit production of interleukin 6.
See more in PubMed
Lo N.C., Hotez P.J. Public Health and Economic Consequences of Vaccine Hesitancy for Measles in the United States. JAMA Pediatr. 2017;171:887–892. doi: 10.1001/jamapediatrics.2017.1695. PubMed DOI PMC
Calandrillo S.P. Vanishing vaccinations: Why are so many Americans opting out of vaccinating their children? Univ. Mich. J. Law Reform. 2004;37:353–440. PubMed
Freeman M. Toxic Vaccine Adjuvants & Ingredients: The Top 10. [(accessed on 5 October 2017)]; Available online: http://freedom-articles.toolsforfreedom.com/toxic-vaccine-adjuvants-the-top-10/
Kocourkova A., Honegr J., Kuca K., Danova J. Vaccine ingredients: Components that influence vaccine efficacy. Mini-Rev. Med. Chem. 2017;17:451–466. doi: 10.2174/1389557516666160801103303. PubMed DOI
Doja A., Roberts W. Immunizations and autism: A review of the literature. Can. J. Neurol. Sci. 2006;33:341–346. doi: 10.1017/S031716710000528X. PubMed DOI
C-621/15-N. W and Others v Sanofi Pasteur MSD and Others. Court of Justice of the European Union; Luxemburg: Jun 21, 2017.
O’Hagan D.T. Vaccine Adjuvants: Preparation Methods and Research Protocols. Humana Press; New York, NY, USA: 2000.
Ainge G.D., Martin W.J., Compton B.J., Hayman C.M., Larsen D.S., Yoon S.I., Wilson I.A., Harper J.L., Painter G.F. Synthesis and Toll-like Receptor 4 (TLR4) Activity of Phosphatidylinositol Dimannoside Analogues. J. Med. Chem. 2011;54:7268–7279. doi: 10.1021/jm2008419. PubMed DOI PMC
Honegr J., Soukup O., Dolezal R., Malinak D., Penhaker M., Prymula R., Kuca K. Structural Properties of Potential Synthetic Vaccine Adjuvants-TLR Agonists. Curr. Med. Chem. 2015;22:3306–3325. doi: 10.2174/0929867322666150821094634. PubMed DOI
Wang X.H., Smith C., Yin H. Targeting Toll-like receptors with small molecule agents. Chem. Soc. Rev. 2013;42:4859–4866. doi: 10.1039/c3cs60039d. PubMed DOI PMC
Dolezal R., Ramalho T., França T.C., Kuca K. Parallel Flexible Molecular Docking in Computational Chemistry on High Performance Computing Clusters. In: Núñez M., Nguyen N.T., Camacho D., Trawiński B., editors. Computational Collective Intelligence. Vol. 9330. Springer International Publishing; Cham, Switzerland: 2015. pp. 418–427.
Zhang S.T., Cheng K., Wang X.H., Yin H. Selection, synthesis, and anti-inflammatory evaluation of the arylidene malonate derivatives as TLR4 signaling inhibitors. Bioorg. Med. Chem. 2012;20:6073–6079. doi: 10.1016/j.bmc.2012.08.022. PubMed DOI PMC
Weber M.D., Frank M.G., Sobesky J.L., Watkins L.R., Maier S.F. Blocking toll-like receptor 2 and 4 signaling during a stressor prevents stress-induced priming of neuroinflammatory responses to a subsequent immune challenge. Brain Behav. Immun. 2013;32:112–121. doi: 10.1016/j.bbi.2013.03.004. PubMed DOI PMC
Stover A.G., Correia J.D., Evans J.T., Cluff C.W., Elliott M.W., Jeffery E.W., Johnson D.A., Lacy M.J., Baldridge J.R., Probst P., et al. Structure-activity relationship of synthetic Toll-like receptor 4 agonists. J. Biol. Chem. 2004;279:4440–4449. doi: 10.1074/jbc.M310760200. PubMed DOI
Lewicky J.D., Ulanova M., Jiang Z.H. Improving the immunostimulatory potency of diethanolamine-containing lipid A mimics. Bioorg. Med. Chem. 2013;21:2199–2209. doi: 10.1016/j.bmc.2013.02.024. PubMed DOI
Lewicky J.D., Ulanova M., Jiang Z.H. Synthesis of a dimeric monosaccharide lipid A mimic and its synergistic effect on the immunostimulatory activity of lipopolysaccharide. Carbohydr. Res. 2011;346:1705–1713. doi: 10.1016/j.carres.2011.05.018. PubMed DOI
Chan M., Hayashi T., Mathewson R.D., Nour A., Hayashi Y., Yao S.Y., Tawatao R.I., Crain B., Tsigelny I.F., Kouznetsoya V.L., et al. Identification of Substituted Pyrimido 5,4-b indoles as Selective Toll-Like Receptor 4 Ligands. J. Med. Chem. 2013;56:4206–4223. doi: 10.1021/jm301694x. PubMed DOI PMC
Wu G., Lv T., Mo W., Yang X., Gao Y., Chen H. One-pot synthesis of tricyclo-1, 4-benzoxazines via visible-light photoredox catalysis in continuous flow. Tetrahedron Lett. 2017;58:1395–1398. doi: 10.1016/j.tetlet.2017.02.068. DOI
Li Y., Feng T., Liu P., Liu C., Wang X., Li D., Li N., Chen M., Xu Y., Si S. Optimization of rutaecarpine as ABCA1 up-regulator for treating atherosclerosis. ACS Med. Chem. Lett. 2014;5:884–888. doi: 10.1021/ml500131a. PubMed DOI PMC
Stephens M.D., Hubble V.B., Ernst R.K., van Hoek M.L., Melander R.J., Cavanagh J., Melander C. Potentiation of Francisella resistance to conventional antibiotics through small molecule adjuvants. MedChemComm. 2016;7:128–131. doi: 10.1039/C5MD00353A. PubMed DOI PMC
Yoshioka T., Mohri K., Oikawa Y., Yonemitsu O. Synthesis of oxazolylindole alkaloids from tryptamine and tryptophan by oxidation with 2,3-dichloro-5,6-dicyanobenzoquinone. J. Chem. Res. 1981;12:194–195. doi: 10.1002/chin.198143311. DOI
Ho B.T., McIsaac W.M., Tansey L.W. Hydroxyindole-O-methyltransferase III: Influence of the phenyl moiety on the inhibitory activities of some N-acyltryptamines. J. Pharm. Sci. 1969;58:563–566. doi: 10.1002/jps.2600580508. PubMed DOI
Wu J., Wang F., Ma Y., Cui X., Cun L., Zhu J., Deng J., Yu B. Asymmetric transfer hydrogenation of imines and iminiums catalyzed by a water-soluble catalyst in water. Chem. Commun. 2006:1766–1768. doi: 10.1039/b600496b. PubMed DOI
Ho B.T., McIssaac W.M., Tansey L.W., Kralik P.M. Hydroxyindole-O-methyltransferase II. Inhibitory Activities of Some N-Acyltryptamines. J. Pharm. Sci. 1968;57:1998–2000. doi: 10.1002/jps.2600571139. PubMed DOI
Ho B.T., An R., Noel M.B., Tansey L.W. Central nervous system depressive activity of some amides of tryptamine. J. Med. Chem. 1971;14:553–554. doi: 10.1021/jm00288a026. PubMed DOI
Trott O., Olson A.J. Software News and Update AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010;31:455–461. PubMed PMC
Kumari R., Kumar R., Lynn A. g_mmpbsa—A GROMACS Tool for High-Throughput MM-PBSA Calculations. J. Chem. Inf. Model. 2014;54:1951–1962. doi: 10.1021/ci500020m. PubMed DOI
Baker N.A., Sept D., Joseph S., Holst M.J., McCammon J.A. Electrostatics of nanosystems: Application to microtubules and the ribosome. Proc. Natl. Acad. Sci. USA. 2001;98:10037–10041. doi: 10.1073/pnas.181342398. PubMed DOI PMC
Ohto U., Yamakawa N., Akashi-Takamura S., Miyake K., Shimizu T. Structural Analyses of Human Toll-like Receptor 4 Polymorphisms D299G and T399I. J. Biol. Chem. 2012;287:40611–40617. doi: 10.1074/jbc.M112.404608. PubMed DOI PMC
Nocedal J., Wright S.J. Numerical Optimization. Springer; New York, NY, USA: 1999. (Springer Series in Operations Research).
Liu B., Wang L., Jin Y.H. An effective PSO-based memetic algorithm for flow shop scheduling. IEEE Trans. Syst. Man Cybern. Part B Cybern. 2007;37:18–27. doi: 10.1109/TSMCB.2006.883272. PubMed DOI
Svajger U., Brus B., Turk S., Sova M., Hodnik V., Anderluh G., Gobec S. Novel toll-like receptor 4 (TLR4) antagonists identified by structure- and ligand-based virtual screening. Eur. J. Med. Chem. 2013;70:393–399. doi: 10.1016/j.ejmech.2013.10.019. PubMed DOI
Sigma-Aldrich, Histopaque 1077 Datasheet. [(accessed on 6 December 2017)]; Available online: https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma/Product_Information_Sheet/1/10771pis.pdf.
Jiang Z.H., Budzynski W.A., Qiu D.X., Yalamati D., Koganty R.R. Monophosphoryl lipid A analogues with varying 3-O-substitution: Synthesis and potent adjuvant activity. Carbohydr. Res. 2007;342:784–796. doi: 10.1016/j.carres.2007.01.012. PubMed DOI