Design, Synthesis and Biological Evaluation of New Substituted Diquinolinyl-Pyridine Ligands as Anticancer Agents by Targeting G-Quadruplex
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
29301210
PubMed Central
PMC6017375
DOI
10.3390/molecules23010081
PII: molecules23010081
Knihovny.cz E-zdroje
- Klíčová slova
- FRET-melting, G-quadruplex, G4 ligands, antiproliferative activity, cancer, circular dichroism, diquinolinyl-pyridine, telomerase,
- MeSH
- buňky K562 MeSH
- chinoliny chemická syntéza farmakologie MeSH
- G-kvadruplexy * MeSH
- HL-60 buňky MeSH
- lidé MeSH
- ligandy MeSH
- protinádorové látky chemická syntéza farmakologie MeSH
- pyridiny chemická syntéza farmakologie MeSH
- racionální návrh léčiv MeSH
- telomerasa antagonisté a inhibitory MeSH
- vazba proteinů MeSH
- viabilita buněk účinky léků MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chinoliny MeSH
- ligandy MeSH
- protinádorové látky MeSH
- pyridiny MeSH
- telomerasa MeSH
G-quadruplexes (G4) are stacked non-canonical nucleic acid structures found in specific G-rich DNA or RNA sequences in the human genome. G4 structures are liable for various biological functions; transcription, translation, cell aging as well as diseases such as cancer. These structures are therefore considered as important targets for the development of anticancer agents. Small organic heterocyclic molecules are well known to target and stabilize G4 structures. In this article, we have designed and synthesized 2,6-di-(4-carbamoyl-2-quinolyl)pyridine derivatives and their ability to stabilize G4-structures have been determined through the FRET melting assay. It has been established that these ligands are selective for G4 over duplexes and show a preference for the parallel conformation. Next, telomerase inhibition ability has been assessed using three cell lines (K562, MyLa and MV-4-11) and telomerase activity is no longer detected at 0.1 μM concentration for the most potent ligand 1c. The most promising G4 ligands were also tested for antiproliferative activity against the two human myeloid leukaemia cell lines, HL60 and K562.
Institute of Biophysics of the CAS v v i Královopolská 135 612 65 Brno Czech Republic
Université de Bordeaux INSERM U1053 Cutaneous Lymphoma Oncogenesis Team 33076 Bordeaux CEDEX France
Zobrazit více v PubMed
Neidle S., Balasubramanian S. Quadruplex Nucleic Acids. Royal Society of Chemistry; Cambridge, UK: 2006.
Neidle S. The structures of quadruplex nucleic acids and their drug complexes. Curr. Opin. Struct. Biol. 2009;19:239–250. doi: 10.1016/j.sbi.2009.04.001. PubMed DOI
Bedrat A., Lacroix L., Mergny J.-L. Re-evaluation of G-quadruplex propensity with G4Hunter. Nucleic Acids Res. 2016;44:1746–1759. doi: 10.1093/nar/gkw006. PubMed DOI PMC
Chambers V.S., Marsico G., Boutell J.M., Di Antonio M., Smith G.P., Balasubramanian S. High-throughput sequencing of DNA G-quadruplex structures in the human genome. Nat. Biotechnol. 2015;33:877–881. doi: 10.1038/nbt.3295. PubMed DOI
Balasubramanian S., Hurley L.H., Neidle S. Targeting G-quadruplexes in gene promoters: A novel anticancer strategy? Nat. Rev. Drug Discov. 2011;10:261–275. doi: 10.1038/nrd3428. PubMed DOI PMC
Kumari S., Bugaut A., Huppert J.L., Balasubramanian S. An RNA G-quadruplex in the 5′ UTR of the NRAS proto-oncogene modulates translation. Nat. Chem. Biol. 2007;3:218–221. doi: 10.1038/nchembio864. PubMed DOI PMC
Huang W., Smaldino P.J., Zhang Q., Miller L.D., Cao P., Stadelman K., Wan M., Giri B., Lei M., Nagamine Y., et al. Yin Yang 1 contains G-quadruplex structures in its promoter and 5′-UTR and its expression is modulated by G4 resolvase 1. Nucleic Acids Res. 2011;40:1033–1049. doi: 10.1093/nar/gkr849. PubMed DOI PMC
Cammas A., Millevoi S. RNA G-quadruplexes: Emerging mechanisms in disease. Nucleic Acids Res. 2017;45:1584–1595. doi: 10.1093/nar/gkw1280. PubMed DOI PMC
Fukuhara M., Ma Y., Nagasawa K., Toyoshima F. A G-quadruplex structure at the 5′ end of the H19 coding region regulates H19 transcription. Sci. Rep. 2017;7:45815. doi: 10.1038/srep45815. PubMed DOI PMC
Kanoh Y., Matsumoto S., Fukatsu R., Kakusho N., Kono N., Renard-Guillet C., Masuda K., Iida K., Nagasawa K., Shirahige K., et al. Rif1 binds to G quadruplexes and suppresses replication over long distances. Nat. Struct. Mol. Biol. 2015;22:889–897. doi: 10.1038/nsmb.3102. PubMed DOI
Kumar P., Yadav V.K., Baral A., Kumar P., Saha D., Chowdhury S. Zinc-finger transcription factors are associated with guanine quadruplex motifs in human, chimpanzee, mouse and rat promoters genome-wide. Nucleic Acids Res. 2011;39:8005–8016. doi: 10.1093/nar/gkr536. PubMed DOI PMC
Eddy J., Maizels N. Gene function correlates with potential for G4 DNA formation in the human genome. Nucleic Acids Res. 2006;34:3887–3896. doi: 10.1093/nar/gkl529. PubMed DOI PMC
Yang D., Okamoto K. Structural insights into G-quadruplexes: Towards new anticancer drugs. Future Med. Chem. 2010;2:619–646. doi: 10.4155/fmc.09.172. PubMed DOI PMC
Collie G.W., Parkinson G.N. The application of DNA and RNA G-quadruplexes to therapeutic medicines. Chem. Soc. Rev. 2011;40:5867–5892. doi: 10.1039/c1cs15067g. PubMed DOI
Brown R.V., Danford F.L., Gokhale V., Hurley L.H., Brooks T.A. Demonstration that drug-targeted down-regulation of MYC in non-Hodgkins lymphoma is directly mediated through the promoter G-quadruplex. J. Biol. Chem. 2011;286:41018–41027. doi: 10.1074/jbc.M111.274720. PubMed DOI PMC
McLuckie K.I., Waller Z.A., Sanders D.A., Alves D., Rodriguez R., Dash J., McKenzie G.J., Venkitaraman A.R., Balasubramanian S. G-quadruplex-binding benzo[a]phenoxazines down-regulate c-KIT expression in human gastric carcinoma cells. J. Am. Chem. Soc. 2011;133:2658–2663. doi: 10.1021/ja109474c. PubMed DOI PMC
Cogoi S., Paramasivam M., Membrino A., Yokoyama K.K., Xodo L.E. The KRAS promoter responds to Myc-associated zinc finger and poly(ADP-ribose) polymerase 1 proteins, which recognize a critical quadruplex-forming GA-element. J. Biol. Chem. 2010;285:22003–22016. doi: 10.1074/jbc.M110.101923. PubMed DOI PMC
Ohnmacht S.A., Micco M., Petrucci V., Todd A.K., Reszka A.P., Gunaratnam M., Carvalho M.A., Zloh M., Neidle S. Sequences in the HSP90 promoter form G-quadruplex structures with selectivity for disubstituted phenyl bis-oxazole derivatives. Bioorg. Med. Chem. Lett. 2012;22:5930–5935. doi: 10.1016/j.bmcl.2012.07.065. PubMed DOI
Chevret E., Andrique L., Prochazkova-Carlotti M., Ferrer J., Cappellen D., Laharanne E., Idrissi Y., Boettiger A., Sahraoui W., Ruiz F., et al. Telomerase functions beyond telomere maintenance in primary cutaneous T-cell lymphoma. Blood. 2014;123:1850–1859. doi: 10.1182/blood-2013-05-500686. PubMed DOI
Shay J.W., Wright W.E. Role of telomeres and telomerase in cancer. Semin. Cancer Biol. 2011;21:349–353. doi: 10.1016/j.semcancer.2011.10.001. PubMed DOI PMC
Ohnmacht S.A., Neidle S. Small-molecule quadruplex-targeted drug discovery. Bioorg. Med. Chem. Lett. 2014;24:2602–2612. doi: 10.1016/j.bmcl.2014.04.029. PubMed DOI
Han F.X., Wheelhouse R.T., Hurley L.H. Interactions of TMPyP4 and TMPyP2 with quadruplex DNA. Structural basis for the differential effects on telomerase inhibition. J. Am. Chem. Soc. 1999;121:3561–3570. doi: 10.1021/ja984153m. DOI
Shi D.-F., Wheelhouse R.T., Sun D., Hurley L.H. Quadruplex-interactive agents as telomerase inhibitors: Synthesis of porphyrins and structure- activity relationship for the inhibition of telomerase. J. Med. Chem. 2001;44:4509–4523. doi: 10.1021/jm010246u. PubMed DOI
Beniaminov A.D., Novikov R.A., Mamaeva O.K., Mitkevich V.A., Smirnov I.P., Livshits M.A., Shchyolkina A.K., Kaluzhny D.N. Light-induced oxidation of the telomeric G4 DNA in complex with Zn(II) tetracarboxymethyl porphyrin. Nucleic Acids Res. 2016;44:10031–10041. doi: 10.1093/nar/gkw947. PubMed DOI PMC
Ruan T.L., Davis S.J., Powell B.M., Harbeck C.P., Habdas J., Habdas P., Yatsunyk L.A. Lowering the overall charge on TMPyP4 improves its selectivity for G-quadruplex DNA. Biochimie. 2017;132:121–130. doi: 10.1016/j.biochi.2016.11.003. PubMed DOI
Shin-ya K., Wierzba K., Matsuo K., Ohtani T., Yamada Y., Furihata K., Hayakawa Y., Seto H. Telomestatin, a novel telomerase inhibitor from streptomyces anulatus. J. Am. Chem. Soc. 2001;123:1262–1263. doi: 10.1021/ja005780q. PubMed DOI
Nakamura T., Ma Y., Iida K. Design, synthesis and evaluation of an L-Dopa-derived macrocyclic hexaoxazole (6OTD) as a G-quadruplex-selective ligand. Heterocycles. 2016;92:305–315.
Nakamura T., Iida K., Tera M., Shin-ya K., Seimiya H., Nagasawa K. A caged ligand for a telomeric G-quadruplex. ChemBioChem. 2012;13:774–777. doi: 10.1002/cbic.201200013. PubMed DOI
Iida K., Nakamura T., Yoshida W., Tera M., Nakabayashi K., Hata K., Ikebukuro K., Nagasawa K. Fluorescent-ligand mediated screening of G-quadruplex structures using a DNA microarray. Angew. Chem. Int. Ed. 2013;52:12052–12055. doi: 10.1002/anie.201305366. PubMed DOI
Sakuma M., Ma Y., Tsushima Y., Iida K., Hirokawa T., Nagasawa K. Design and synthesis of unsymmetric macrocyclic hexaoxazole compounds with an ability to induce distinct G-quadruplex topologies in telomeric DNA. Org. Biomol. Chem. 2016;14:5109–5116. doi: 10.1039/C6OB00437G. PubMed DOI
Campbell N.H., Patel M., Tofa A.B., Ghosh R., Parkinson G.N., Neidle S. Selectivity in ligand recognition of G-quadruplex loops. Biochemistry. 2009;48:1675–1680. doi: 10.1021/bi802233v. PubMed DOI
Liao S.-R., Zhou C.-X., Wu W.-B., Ou T.-M., Tan J.-H., Li D., Gu L.-Q., Huang Z.-S. 12-N-Methylated 5,6-dihydrobenzo[c]acridine derivatives: A new class of highly selective ligands for c-myc G-quadruplex DNA. Eur. J. Med. Chem. 2012;53:52–63. doi: 10.1016/j.ejmech.2012.03.034. PubMed DOI
Guo Q.-L., Su H.-F., Wang N., Liao S.-R., Lu Y.-T., Ou T.-M., Tan J.-H., Li D., Huang Z.-S. Synthesis and evaluation of 7-substituted-5,6-dihydrobenzo[c]acridine derivatives as new c-KIT promoter G-quadruplex binding ligands. Eur. J. Med. Chem. 2017;130:458–471. doi: 10.1016/j.ejmech.2017.02.051. PubMed DOI
De Cian A., Delemos E., Mergny J.-L., Teulade-Fichou M.P., Monchaud D. Highly efficient G-quadruplex recognition by bisquinolinium compounds. J. Am. Chem. Soc. 2007;129:1856–1857. doi: 10.1021/ja067352b. PubMed DOI
Wu S., Wang L., Zhang N., Liu Y., Zheng W., Chang A., Wang F., Li S., Shangguan D. A bis(methylpiperazinylstyryl)phenanthroline as a fluorescent ligand for G-quadruplexes. Chem. Eur. J. 2016;22:6037–6047. doi: 10.1002/chem.201505170. PubMed DOI
Nielsen M.C., Larsen A.F., Abdikadir F.H., Ulven T. Phenanthroline-2,9-bistriazoles as selective G-quadruplex ligands. Eur. J. Med. Chem. 2014;72:119–126. doi: 10.1016/j.ejmech.2013.11.027. PubMed DOI
Gueddouda N.M., Hurtado M.R., Moreau S., Ronga L., Das R.N., Savrimoutou S., Rubio S., Marchand A., Mendoza O., Marchivie M., et al. Design, synthesis, and evaluation of 2,9-bis[(substituted-aminomethyl) phenyl]-1,10-phenanthroline derivatives as G-quadruplex ligands. ChemMedChem. 2017;12:146–160. doi: 10.1002/cmdc.201600511. PubMed DOI
Duan W., Rangan A., Vankayalapati H., Kim M.-Y., Zeng Q., Sun D., Han H., Fedoroff O.Y., Nishioka D., Rha S.Y., et al. Design and synthesis of fluoroquinophenoxazines that interact with human telomeric G-quadruplexes and their biological effects. Mol. Cancer Ther. 2001;1:103–120. PubMed
Han H., Hurley L.H., Salazar M. A DNA polymerase stop assay for G-quadruplex-interactive compounds. Nucleic Acids Res. 1999;27:537–542. doi: 10.1093/nar/27.2.537. PubMed DOI PMC
De Cian A., Guittat L., Kaiser M., Saccà B., Amrane S., Bourdoncle A., Alberti P., Teulade-Fichou M.-P., Lacroix L., Mergny J.-L. Fluorescence-based melting assays for studying quadruplex ligands. Methods. 2007;42:183–195. doi: 10.1016/j.ymeth.2006.10.004. PubMed DOI
Marin I., Turta C., Benniston A.C., Harrington W., Clegg W. Homoleptic and heteroleptic ruthenium(II) complexes based on 2,6-bis(quinolin-2-yl)pyridine ligands-multiple-charged-state modules for potential density memory storage. Eur. J. Inorg. Chem. 2015;2015:786–793. doi: 10.1002/ejic.201403088. DOI
Amrane S., Adrian M., Heddi B., Serero A., Nicolas A., Mergny J.-L., Phan A.T. Formation of Pearl-Necklace monomorphic G-quadruplexes in the human CEB25 minisatellite. J. Am. Chem. Soc. 2012;134:5807–5816. doi: 10.1021/ja208993r. PubMed DOI
Ambrus A., Chen D., Dai J., Jones R.A., Yang D. Solution structure of the biologically relevant G-Quadruplex element in the human c-MYC promoter. Implications for G-Quadruplex stabilization. Biochemistry. 2005;44:2048–2058. doi: 10.1021/bi048242p. PubMed DOI
Phan A.T., Kuryavyi V., Burge S., Neidle S., Patel D.J. Structure of an unprecedented G-Quadruplex scaffold in the human c-kit promoter. J. Am. Chem. Soc. 2007;129:4386–4392. doi: 10.1021/ja068739h. PubMed DOI PMC
Marathias V.M., Bolton P.H. Structures of the potassium-saturated, 2:1, and intermediate, 1:1, forms of a quadruplex DNA. Nucleic Acids Res. 2000;28:1969–1977. doi: 10.1093/nar/28.9.1969. PubMed DOI PMC
Amrane S., Ang R.W.L., Tan Z.M., Li C., Lim J.K.C., Lim J.M.W., Lim K.W., Phan A.T. A novel chair-type G-quadruplex formed by a Bombyx mori telomeric sequence. Nucleic Acids Res. 2009;37:931–938. doi: 10.1093/nar/gkn990. PubMed DOI PMC
Lim K.W., Alberti P., Guédin A., Lacroix L., Riou J.-F., Royle N.J., Mergny J.-L., Phan A.T. Sequence variant (CTAGGG)n in the human telomere favors a G-quadruplex structure containing a G•C•G•C tetrad. Nucleic Acids Res. 2009;37:6239–6248. doi: 10.1093/nar/gkp630. PubMed DOI PMC
De Cian A., Grellier P., Mouray E., Depoix D., Bertrand H., Monchaud D., Teulade-Fichou M.-P., Mergny J.-L., Alberti P. Plasmodium telomeric sequences: Structure, stability and quadruplex targeting by small compounds. ChemBioChem. 2008;9:2730–2739. doi: 10.1002/cbic.200800330. PubMed DOI
Cawthon R.M. Telomere length measurement by a novel monochrome multiplex quantitative PCR method. Nucleic Acids Res. 2009;37:e21. doi: 10.1093/nar/gkn1027. PubMed DOI PMC