Quantifying the effects of ecological constraints on trait expression using novel trait-gradient analysis parameters

. 2018 Jan ; 8 (1) : 435-440. [epub] 20171130

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29321883

Complex processes related to biotic and abiotic forces can impose limitations to assembly and composition of plant communities. Quantifying the effects of these constraints on plant functional traits across environmental gradients, and among communities, remains challenging. We define ecological constraint (Ci ) as the combined, limiting effect of biotic interactions and environmental filtering on trait expression (i.e., the mean value and range of functional traits). Here, we propose a set of novel parameters to quantify this constraint by extending the trait-gradient analysis (TGA) methodology. The key parameter is ecological constraint, which is dimensionless and can be measured at various scales, for example, on population and community levels. It facilitates comparing the effects of ecological constraints on trait expressions across environmental gradients, as well as within and among communities. We illustrate the implementation of the proposed parameters using the bark thickness of 14 woody species along an aridity gradient on granite outcrops in southwestern Australia. We found a positive correlation between increasing environmental stress and strength of ecological constraint on bark thickness expression. Also, plants from more stressful habitats (shrublands on shallow soils and in sun-exposed locations) displayed higher ecological constraint for bark thickness than plants in more benign habitats (woodlands on deep soils and in sheltered locations). The relative ease of calculation and dimensionless nature of Ci allow it to be readily implemented at various scales and make it widely applicable. It therefore has the potential to advance the mechanistic understanding of the ecological processes shaping trait expression. Some future applications of the new parameters could be investigating the patterns of ecological constraints (1) among communities from different regions, (2) on different traits across similar environmental gradients, and (3) for the same trait across different gradient types.

Zobrazit více v PubMed

Ackerly, D. D. , & Cornwell, W. K. (2007). A trait‐based approach to community assembly: Partitioning of species trait values into within‐ and among‐community components. Ecology Letters, 10, 135–145. https://doi.org/10.1111/ele.2007.10.issue-2 PubMed DOI

Albert, C. H. , Thuiller, W. , Yoccoz, N. G. , Soudant, A. , Boucher, F. , Saccone, P. , & Lavorel, S. (2010). Intraspecific functional variability: Extent, structure and sources of variation. Journal of Ecology, 98, 604–613. https://doi.org/10.1111/jec.2010.98.issue-3 DOI

Albornoz, F. , Burgess, T. I. , Lambers, H. , Etchells, H. , & Laliberté, E. (2017). Native soilborne pathogens equalize differences in competitive ability between plants of contrasting nutrient‐acquisition strategies. Journal of Ecology, 105, 549–557. https://doi.org/10.1111/jec.2017.105.issue-2 DOI

Armas, C. , Schöb, C. , & Gutíerrez, J. R. (2013). Modulating effects of ontogeny on the outcome of plant–plant interactions along stress gradients. New Phytologist, 200, 7–9. https://doi.org/10.1111/nph.12460 PubMed DOI

Auger, S. , & Shipley, B. (2013). Inter‐specific and intra‐specific trait variation along short environmental gradients in an old‐growth temperate forest. Journal of Vegetation Science, 24, 419–428. https://doi.org/10.1111/jvs.2013.24.issue-3 DOI

Baraloto, C. , Hardy, O. J. , Paine, C. E. T. , Dexter, K. G. , Cruaud, C. , Dunning, L. T. , … Chave, J. (2012). Using functional traits and phylogenetic trees to examine the assembly of tropical tree communities. Journal of Ecology, 100, 690–701. https://doi.org/10.1111/j.1365-2745.2012.01966.x DOI

Belyea, L. R. , & Lancaster, J. (1999). Assembly rules within a contingent ecology. Oikos, 86, 402–416. https://doi.org/10.2307/3546646 DOI

Bernard‐Verdier, M. , Navas, M.‐L. , Vellend, M. , Violle, C. , Fayolle, A. , & Garnier, E. (2012). Community assembly along a soil depth gradient: Contrasting patterns of plant trait convergence and divergence in a Mediterranean rangeland. Journal of Ecology, 100, 1422–1433. https://doi.org/10.1111/jec.2012.100.issue-6 DOI

Bolnick, D. I. , Amarasekare, P. , Araújo, M. S. , Bürger, R. , Levine, J. M. , Novak, M. , … Vasseur, D. A. (2011). Why intraspecific trait variation matters in community ecology. Trends in Ecology and Evolution, 26, 183–192. https://doi.org/10.1016/j.tree.2011.01.009 PubMed DOI PMC

Butterfield, B. J. , Bradford, J. B. , Munson, S. M. , & Gremer, J. R. (2017). Aridity increases below‐ground niche breadth in grass communities. Plant Ecology, 218, 385–394. https://doi.org/10.1007/s11258-016-0696-4 DOI

Butterfield, B. J. , & Suding, K. N. (2013). Single‐trait functional indices outperform multi‐trait indices in linking environmental gradients and ecosystem services in a complex landscape. Journal of Ecology, 101, 9–17. https://doi.org/10.1111/jec.2012.101.issue-1 DOI

Cornwell, W. K. , & Ackerly, D. D. (2009). Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecological Monographs, 79, 109–126. https://doi.org/10.1890/07-1134.1 DOI

Cornwell, W. K. , Schwilk, D. W. , & Ackerly, D. D. (2006). A trait‐based test for habitat filtering: Convex hull volume. Ecology, 87, 1465–1471. https://doi.org/10.1890/0012-9658(2006)87[1465:ATTFHF]2.0.CO;2 PubMed DOI

de Bello, F. , Lavorel, S. , Albert, C. H. , Thuiller, W. , Grigulis, K. , Dolezal, J. , … Lepš, J. (2011). Quantifying the relevance of intraspecific trait variability for functional diversity. Methods in Ecology and Evolution, 2, 163–174. https://doi.org/10.1111/j.2041-210X.2010.00071.x DOI

de Bello, F. , Price, J. N. , Münkemüller, T. , Liira, J. , Zobel, M. , Thuiller, W. , … Pärtel, M. (2012). Functional species pool framework to test for biotic effects on community assembly. Ecology, 93, 2263–2273. https://doi.org/10.1890/11-1394.1 PubMed DOI

Diamond, J. M. (1975). Ecology and evolution of communities. Cambridge: Harvard University Press.

Díaz, S. , Kattge, J. , Cornelissen, J. H. C. , Wright, I. J. , Lavorel, S. , Dray, S. , … Gorné, L. D. (2016). The global spectrum of plant form and function. Nature, 529, 167–171. https://doi.org/10.1038/nature16489 PubMed DOI

Dwyer, J. M. , & Laughlin, D. C. (2017a). Constraints on trait combinations explain climatic drivers of biodiversity: The importance of trait covariance in community assembly. Ecology Letters, 20, 872–882. https://doi.org/10.1111/ele.2017.20.issue-7 PubMed DOI

Dwyer, J. M. , & Laughlin, D. C. (2017b). Selection on trait combinations along environmental gradients. Journal of Vegetation Science, 28, 672–673. https://doi.org/10.1111/jvs.2017.28.issue-4 DOI

Freschet, G. T. , Dias, A. T. , Ackerly, D. D. , Aerts, R. , van Bodegom, P. M. , Cornwell, W. K. , … Cornelissen, J. H. C. (2011). Global to community scale differences in the prevalence of convergent over divergent leaf trait distributions in plant assemblages. Global Ecology and Biogeography, 20, 755–765. https://doi.org/10.1111/geb.2011.20.issue-5 DOI

Fukami, T. , Bezemer, T. M. , Mortimer, S. R. , & van der Putten, W. H. (2005). Species divergence and trait convergence in experimental plant community assembly. Ecology Letters, 8, 1283–1290. https://doi.org/10.1111/ele.2005.8.issue-12 DOI

Götzenberger, L. , de Bello, F. , Bråthen, K. A. , Davison, J. , Dubuis, A. , Guisan, A. , … Zobel, M. (2012). Ecological assembly rules in plant communities–approaches, patterns and prospects. Biological Reviews, 87, 111–127. https://doi.org/10.1111/j.1469-185X.2011.00187.x PubMed DOI

Gross, N. , Börger, L. , Soriano‐Morales, S. , Le Bagousse‐Pinguet, Y. , Quero, J. L. , García‐Gómez, M. , … Maestre, F. T. (2013). Uncovering multiscale effects of aridity and biotic interactions on the functional structure of Mediterranean shrublands. Journal of Ecology, 101, 637–649. https://doi.org/10.1111/1365-2745.12063 DOI

Houseman, G. R. , & Gross, K. L. (2006). Does ecological filtering across a productivity gradient explain variation in species pool‐richness relationships? Oikos, 115, 148–154. https://doi.org/10.1111/oik.2006.115.issue-1 DOI

Hubbell, S. P. (2001). The unified neutral theory of biodiversity and biogeography. Princeton, NJ: Princeton University Press.

Hutchinson, G. (1957). Concluding remarks. Cold Spring Harbor Sympia on Quantitative Biology, 22, 415–427. https://doi.org/10.1101/SQB.1957.022.01.039 DOI

Jung, V. , Violle, C. , Mondy, C. , Hoffmann, L. , & Muller, S. (2010). Intraspecific variability and trait‐based community assembly. Journal of Ecology, 98, 1134–1140. https://doi.org/10.1111/jec.2010.98.issue-5 DOI

Kichenin, E. , Wardle, D. A. , Peltzer, D. A. , Morse, C. W. , & Freschet, G. T. (2013). Contrasting effects of plant inter‐ and intraspecific variation on community‐level trait measures along an environmental gradient. Functional Ecology, 27, 1254–1261. https://doi.org/10.1111/fec.2013.27.issue-5 DOI

Kraft, N. J. B. , Adler, P. B. , Godoy, O. , James, E. C. , Fuller, S. , & Levine, J. M. (2015). Community assembly, coexistence and the environmental filtering metaphor. Functional Ecology, 29, 592–599. https://doi.org/10.1111/1365-2435.12345 DOI

Kraft, N. J. B. , Crutsinger, G. M. , Forrestel, E. J. , & Emery, N. C. (2014). Functional trait differences and the outcome of community assembly: An experimental test with vernal pool annual plants. Oikos, 123, 1391–1399. https://doi.org/10.1111/more.2014.123.issue-11 DOI

Laughlin, D. C. , & Joshi, C. (2015). Theoretical consequences of trait‐based environmental filtering for the breadth and shape of the niche: New testable hypotheses generated by the Traitspace model. Ecological Modelling, 307, 10–21. https://doi.org/10.1016/j.ecolmodel.2015.03.013 DOI

MacArthur, R. , & Levins, R. (1967). The limiting similarity, convergence, and divergence of coexisting species. The American Naturalist, 101, 377–385. https://doi.org/10.1086/282505 DOI

Maire, V. , Gross, N. , Börger, L. , Proulx, R. , Wirth, C. , da Silveira Pontes, L. , … Louault, F. (2012). Habitat filtering and niche differentiation jointly explain species relative abundance within grassland communities along fertility and disturbance gradients. New Phytologist, 196, 497–509. https://doi.org/10.1111/j.1469-8137.2012.04287.x PubMed DOI

Mason, N. W. H. , de Bello, F. , Doležal, J. , & Lepš, J. (2011). Niche overlap reveals the effects of competition, disturbance and contrasting assembly processes in experimental grassland communities. Journal of Ecology, 99, 788–796. https://doi.org/10.1111/jec.2011.99.issue-3 DOI

Mayfield, M. M. , & Levine, J. M. (2010). Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecology Letters, 13, 1085–1093. https://doi.org/10.1111/j.1461-0248.2010.01509.x PubMed DOI

McIntire, E. J. B. , & Fajardo, A. (2014). Facilitation as a ubiquitous driver of biodiversity. New Phytologist, 201, 403–416. https://doi.org/10.1111/nph.12478 PubMed DOI

Ottaviani, G. , Marcantonio, M. , & Mucina, L. (2016). Soil depth shapes plant functional diversity in granite outcrops vegetation of Southwestern Australia. Plant Ecology & Diversity, 9, 263–276. https://doi.org/10.1080/17550874.2016.1211192 DOI

Pacala, S. W. , & Tilman, D. (1994). Limiting similarity in mechanistic and spatial models of plant competition in heterogeneous environments. The American Naturalist, 143, 222–257. https://doi.org/10.1086/285602 DOI

Pausas, J. G. (2017). Bark thickness and fire regime: Another twist. New Phytologist, 213, 13–15. https://doi.org/10.1111/nph.14277 PubMed DOI

Richardson, S. J. , Laughlin, D. C. , Lawes, D. C. , Holdaway, R. J. , Wilmshurst, J. M. , Wright, M. , … McGlone, M. S. (2015). Functional and environmental determinants of bark thickness in fire‐free temperate rain forest communities. American Journal of Botany, 102, 1590–1598. https://doi.org/10.3732/ajb.1500157 PubMed DOI

Ricklefs, R. E. (2008). Disintegration of the ecological community. The American Naturalist, 172, 741–750. https://doi.org/10.1086/593002 PubMed DOI

Rosell, J. A. (2016). Bark thickness across the angiosperms: More than just fire. New Phytologist, 211, 90–102. https://doi.org/10.1111/nph.13889 PubMed DOI

Rosell, J. A. , Gleason, S. , Méndez‐Alonzo, R. , Chang, Y. , & Westoby, M. (2014). Bark functional ecology: Evidence for tradeoffs, functional coordination, and environment producing bark diversity. New Phytologist, 201, 486–497. https://doi.org/10.1111/nph.12541 PubMed DOI

Schöb, C. , Michalet, R. , Cavieres, L. A. , Pugnaire, F. I. , Brooker, R. W. , Butterfield, B. J. , … Callaway, R. M. (2014). A global analysis of bidirectional interactions in alpine plant communities shows facilitators experiencing strong reciprocal fitness costs. New Phytologist, 202, 95–105. https://doi.org/10.1111/nph.12641 PubMed DOI

Schut, A. G. T. , Wardell‐Johnson, G. W. , Yates, C. J. , Keppel, G. , Baran, I. , Franklin, S. E. , … Byrne, M. (2014). Rapid characterisation of vegetation structure to predict refugia and climate change impacts across a global biodiversity hotspot. PLoS ONE, 9, e82778 https://doi.org/10.1371/journal.pone.0082778 PubMed DOI PMC

Schwilk, D. W. , & Ackerly, D. D. (2005). Limiting similarity and functional diversity along environmental gradients. Ecology Letters, 8, 272–281. https://doi.org/10.1111/ele.2005.8.issue-3 DOI

Siefert, A. , Violle, C. , Chalmandrier, L. , Albert, C. H. , Taudiere, A. , Fajardo, A. , … Wardle, D. A. (2015). A global meta‐analysis of the relative extent of intraspecific trait variation in plant communities. Ecology Letters, 18, 1406–1419. https://doi.org/10.1111/ele.12508 PubMed DOI

Silvertown, J. (2004). Plant coexistence and the niche. Trends in Ecology and Evolution, 19, 605–611. https://doi.org/10.1016/j.tree.2004.09.003 DOI

Spasojevic, M. , & Suding, K. N. (2012). Inferring community assembly mechanisms from functional diversity patterns: The importance of multiple assembly processes. Journal of Ecology, 100, 652–661. https://doi.org/10.1111/j.1365-2745.2011.01945.x DOI

Stubbs, W. J. , & Wilson, J. B. (2004). Evidence for limiting similarity in a sand dune community. Journal of Ecology, 92, 557–567. https://doi.org/10.1111/jec.2004.92.issue-4 DOI

Urbina, I. , Sardans, J. , Grau, O. , Beierkuhnlein, C. , Jentsch, A. , Kreyling, J. , & Peňuelas, J. (2017). Plant community composition affects the species biogeochemical niche. Ecosphere, 8, e01801 https://doi.org/10.1002/ecs2.1801 DOI

Violle, C. , Enquist, B. J. , McGill, B. J. , Jiang, L. , Albert, C. H. , Hulshof, C. , … Messier, J. (2012). The return of the variance: Intraspecific variability in community ecology. Trends in Ecology and Evolution, 27, 244–252. https://doi.org/10.1016/j.tree.2011.11.014 PubMed DOI

Weiher, E. , & Keddy, P. A. (1995). Assembly rules, null models, and trait dispersion: New questions from old patterns. Oikos, 74, 159–164. https://doi.org/10.2307/3545686 DOI

Whittaker, R. H. (1960). Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs, 30, 280–338. https://doi.org/10.2307/1943563 DOI

Zobrazit více v PubMed

Dryad
10.5061/dryad.23fg0

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...