Quantifying the effects of ecological constraints on trait expression using novel trait-gradient analysis parameters
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
29321883
PubMed Central
PMC5756828
DOI
10.1002/ece3.3541
PII: ECE33541
Knihovny.cz E-zdroje
- Klíčová slova
- bark thickness, biotic interactions, ecological forces, environmental filters, functional trait space, gradient analysis, trait‐based community ecology,
- Publikační typ
- časopisecké články MeSH
Complex processes related to biotic and abiotic forces can impose limitations to assembly and composition of plant communities. Quantifying the effects of these constraints on plant functional traits across environmental gradients, and among communities, remains challenging. We define ecological constraint (Ci ) as the combined, limiting effect of biotic interactions and environmental filtering on trait expression (i.e., the mean value and range of functional traits). Here, we propose a set of novel parameters to quantify this constraint by extending the trait-gradient analysis (TGA) methodology. The key parameter is ecological constraint, which is dimensionless and can be measured at various scales, for example, on population and community levels. It facilitates comparing the effects of ecological constraints on trait expressions across environmental gradients, as well as within and among communities. We illustrate the implementation of the proposed parameters using the bark thickness of 14 woody species along an aridity gradient on granite outcrops in southwestern Australia. We found a positive correlation between increasing environmental stress and strength of ecological constraint on bark thickness expression. Also, plants from more stressful habitats (shrublands on shallow soils and in sun-exposed locations) displayed higher ecological constraint for bark thickness than plants in more benign habitats (woodlands on deep soils and in sheltered locations). The relative ease of calculation and dimensionless nature of Ci allow it to be readily implemented at various scales and make it widely applicable. It therefore has the potential to advance the mechanistic understanding of the ecological processes shaping trait expression. Some future applications of the new parameters could be investigating the patterns of ecological constraints (1) among communities from different regions, (2) on different traits across similar environmental gradients, and (3) for the same trait across different gradient types.
Department of Geography and Environmental Studies Stellenbosch University Stellenbosch South Africa
Institute of Botany Academy of Sciences of the Czech Republic Třeboň Czech Republic
School of Biological Sciences The University of Western Australia Perth WA Australia
School of Natural and Built Environments and Future Industries Institute Adelaide SA Australia
Zobrazit více v PubMed
Ackerly, D. D. , & Cornwell, W. K. (2007). A trait‐based approach to community assembly: Partitioning of species trait values into within‐ and among‐community components. Ecology Letters, 10, 135–145. https://doi.org/10.1111/ele.2007.10.issue-2 PubMed DOI
Albert, C. H. , Thuiller, W. , Yoccoz, N. G. , Soudant, A. , Boucher, F. , Saccone, P. , & Lavorel, S. (2010). Intraspecific functional variability: Extent, structure and sources of variation. Journal of Ecology, 98, 604–613. https://doi.org/10.1111/jec.2010.98.issue-3 DOI
Albornoz, F. , Burgess, T. I. , Lambers, H. , Etchells, H. , & Laliberté, E. (2017). Native soilborne pathogens equalize differences in competitive ability between plants of contrasting nutrient‐acquisition strategies. Journal of Ecology, 105, 549–557. https://doi.org/10.1111/jec.2017.105.issue-2 DOI
Armas, C. , Schöb, C. , & Gutíerrez, J. R. (2013). Modulating effects of ontogeny on the outcome of plant–plant interactions along stress gradients. New Phytologist, 200, 7–9. https://doi.org/10.1111/nph.12460 PubMed DOI
Auger, S. , & Shipley, B. (2013). Inter‐specific and intra‐specific trait variation along short environmental gradients in an old‐growth temperate forest. Journal of Vegetation Science, 24, 419–428. https://doi.org/10.1111/jvs.2013.24.issue-3 DOI
Baraloto, C. , Hardy, O. J. , Paine, C. E. T. , Dexter, K. G. , Cruaud, C. , Dunning, L. T. , … Chave, J. (2012). Using functional traits and phylogenetic trees to examine the assembly of tropical tree communities. Journal of Ecology, 100, 690–701. https://doi.org/10.1111/j.1365-2745.2012.01966.x DOI
Belyea, L. R. , & Lancaster, J. (1999). Assembly rules within a contingent ecology. Oikos, 86, 402–416. https://doi.org/10.2307/3546646 DOI
Bernard‐Verdier, M. , Navas, M.‐L. , Vellend, M. , Violle, C. , Fayolle, A. , & Garnier, E. (2012). Community assembly along a soil depth gradient: Contrasting patterns of plant trait convergence and divergence in a Mediterranean rangeland. Journal of Ecology, 100, 1422–1433. https://doi.org/10.1111/jec.2012.100.issue-6 DOI
Bolnick, D. I. , Amarasekare, P. , Araújo, M. S. , Bürger, R. , Levine, J. M. , Novak, M. , … Vasseur, D. A. (2011). Why intraspecific trait variation matters in community ecology. Trends in Ecology and Evolution, 26, 183–192. https://doi.org/10.1016/j.tree.2011.01.009 PubMed DOI PMC
Butterfield, B. J. , Bradford, J. B. , Munson, S. M. , & Gremer, J. R. (2017). Aridity increases below‐ground niche breadth in grass communities. Plant Ecology, 218, 385–394. https://doi.org/10.1007/s11258-016-0696-4 DOI
Butterfield, B. J. , & Suding, K. N. (2013). Single‐trait functional indices outperform multi‐trait indices in linking environmental gradients and ecosystem services in a complex landscape. Journal of Ecology, 101, 9–17. https://doi.org/10.1111/jec.2012.101.issue-1 DOI
Cornwell, W. K. , & Ackerly, D. D. (2009). Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecological Monographs, 79, 109–126. https://doi.org/10.1890/07-1134.1 DOI
Cornwell, W. K. , Schwilk, D. W. , & Ackerly, D. D. (2006). A trait‐based test for habitat filtering: Convex hull volume. Ecology, 87, 1465–1471. https://doi.org/10.1890/0012-9658(2006)87[1465:ATTFHF]2.0.CO;2 PubMed DOI
de Bello, F. , Lavorel, S. , Albert, C. H. , Thuiller, W. , Grigulis, K. , Dolezal, J. , … Lepš, J. (2011). Quantifying the relevance of intraspecific trait variability for functional diversity. Methods in Ecology and Evolution, 2, 163–174. https://doi.org/10.1111/j.2041-210X.2010.00071.x DOI
de Bello, F. , Price, J. N. , Münkemüller, T. , Liira, J. , Zobel, M. , Thuiller, W. , … Pärtel, M. (2012). Functional species pool framework to test for biotic effects on community assembly. Ecology, 93, 2263–2273. https://doi.org/10.1890/11-1394.1 PubMed DOI
Diamond, J. M. (1975). Ecology and evolution of communities. Cambridge: Harvard University Press.
Díaz, S. , Kattge, J. , Cornelissen, J. H. C. , Wright, I. J. , Lavorel, S. , Dray, S. , … Gorné, L. D. (2016). The global spectrum of plant form and function. Nature, 529, 167–171. https://doi.org/10.1038/nature16489 PubMed DOI
Dwyer, J. M. , & Laughlin, D. C. (2017a). Constraints on trait combinations explain climatic drivers of biodiversity: The importance of trait covariance in community assembly. Ecology Letters, 20, 872–882. https://doi.org/10.1111/ele.2017.20.issue-7 PubMed DOI
Dwyer, J. M. , & Laughlin, D. C. (2017b). Selection on trait combinations along environmental gradients. Journal of Vegetation Science, 28, 672–673. https://doi.org/10.1111/jvs.2017.28.issue-4 DOI
Freschet, G. T. , Dias, A. T. , Ackerly, D. D. , Aerts, R. , van Bodegom, P. M. , Cornwell, W. K. , … Cornelissen, J. H. C. (2011). Global to community scale differences in the prevalence of convergent over divergent leaf trait distributions in plant assemblages. Global Ecology and Biogeography, 20, 755–765. https://doi.org/10.1111/geb.2011.20.issue-5 DOI
Fukami, T. , Bezemer, T. M. , Mortimer, S. R. , & van der Putten, W. H. (2005). Species divergence and trait convergence in experimental plant community assembly. Ecology Letters, 8, 1283–1290. https://doi.org/10.1111/ele.2005.8.issue-12 DOI
Götzenberger, L. , de Bello, F. , Bråthen, K. A. , Davison, J. , Dubuis, A. , Guisan, A. , … Zobel, M. (2012). Ecological assembly rules in plant communities–approaches, patterns and prospects. Biological Reviews, 87, 111–127. https://doi.org/10.1111/j.1469-185X.2011.00187.x PubMed DOI
Gross, N. , Börger, L. , Soriano‐Morales, S. , Le Bagousse‐Pinguet, Y. , Quero, J. L. , García‐Gómez, M. , … Maestre, F. T. (2013). Uncovering multiscale effects of aridity and biotic interactions on the functional structure of Mediterranean shrublands. Journal of Ecology, 101, 637–649. https://doi.org/10.1111/1365-2745.12063 DOI
Houseman, G. R. , & Gross, K. L. (2006). Does ecological filtering across a productivity gradient explain variation in species pool‐richness relationships? Oikos, 115, 148–154. https://doi.org/10.1111/oik.2006.115.issue-1 DOI
Hubbell, S. P. (2001). The unified neutral theory of biodiversity and biogeography. Princeton, NJ: Princeton University Press.
Hutchinson, G. (1957). Concluding remarks. Cold Spring Harbor Sympia on Quantitative Biology, 22, 415–427. https://doi.org/10.1101/SQB.1957.022.01.039 DOI
Jung, V. , Violle, C. , Mondy, C. , Hoffmann, L. , & Muller, S. (2010). Intraspecific variability and trait‐based community assembly. Journal of Ecology, 98, 1134–1140. https://doi.org/10.1111/jec.2010.98.issue-5 DOI
Kichenin, E. , Wardle, D. A. , Peltzer, D. A. , Morse, C. W. , & Freschet, G. T. (2013). Contrasting effects of plant inter‐ and intraspecific variation on community‐level trait measures along an environmental gradient. Functional Ecology, 27, 1254–1261. https://doi.org/10.1111/fec.2013.27.issue-5 DOI
Kraft, N. J. B. , Adler, P. B. , Godoy, O. , James, E. C. , Fuller, S. , & Levine, J. M. (2015). Community assembly, coexistence and the environmental filtering metaphor. Functional Ecology, 29, 592–599. https://doi.org/10.1111/1365-2435.12345 DOI
Kraft, N. J. B. , Crutsinger, G. M. , Forrestel, E. J. , & Emery, N. C. (2014). Functional trait differences and the outcome of community assembly: An experimental test with vernal pool annual plants. Oikos, 123, 1391–1399. https://doi.org/10.1111/more.2014.123.issue-11 DOI
Laughlin, D. C. , & Joshi, C. (2015). Theoretical consequences of trait‐based environmental filtering for the breadth and shape of the niche: New testable hypotheses generated by the Traitspace model. Ecological Modelling, 307, 10–21. https://doi.org/10.1016/j.ecolmodel.2015.03.013 DOI
MacArthur, R. , & Levins, R. (1967). The limiting similarity, convergence, and divergence of coexisting species. The American Naturalist, 101, 377–385. https://doi.org/10.1086/282505 DOI
Maire, V. , Gross, N. , Börger, L. , Proulx, R. , Wirth, C. , da Silveira Pontes, L. , … Louault, F. (2012). Habitat filtering and niche differentiation jointly explain species relative abundance within grassland communities along fertility and disturbance gradients. New Phytologist, 196, 497–509. https://doi.org/10.1111/j.1469-8137.2012.04287.x PubMed DOI
Mason, N. W. H. , de Bello, F. , Doležal, J. , & Lepš, J. (2011). Niche overlap reveals the effects of competition, disturbance and contrasting assembly processes in experimental grassland communities. Journal of Ecology, 99, 788–796. https://doi.org/10.1111/jec.2011.99.issue-3 DOI
Mayfield, M. M. , & Levine, J. M. (2010). Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecology Letters, 13, 1085–1093. https://doi.org/10.1111/j.1461-0248.2010.01509.x PubMed DOI
McIntire, E. J. B. , & Fajardo, A. (2014). Facilitation as a ubiquitous driver of biodiversity. New Phytologist, 201, 403–416. https://doi.org/10.1111/nph.12478 PubMed DOI
Ottaviani, G. , Marcantonio, M. , & Mucina, L. (2016). Soil depth shapes plant functional diversity in granite outcrops vegetation of Southwestern Australia. Plant Ecology & Diversity, 9, 263–276. https://doi.org/10.1080/17550874.2016.1211192 DOI
Pacala, S. W. , & Tilman, D. (1994). Limiting similarity in mechanistic and spatial models of plant competition in heterogeneous environments. The American Naturalist, 143, 222–257. https://doi.org/10.1086/285602 DOI
Pausas, J. G. (2017). Bark thickness and fire regime: Another twist. New Phytologist, 213, 13–15. https://doi.org/10.1111/nph.14277 PubMed DOI
Richardson, S. J. , Laughlin, D. C. , Lawes, D. C. , Holdaway, R. J. , Wilmshurst, J. M. , Wright, M. , … McGlone, M. S. (2015). Functional and environmental determinants of bark thickness in fire‐free temperate rain forest communities. American Journal of Botany, 102, 1590–1598. https://doi.org/10.3732/ajb.1500157 PubMed DOI
Ricklefs, R. E. (2008). Disintegration of the ecological community. The American Naturalist, 172, 741–750. https://doi.org/10.1086/593002 PubMed DOI
Rosell, J. A. (2016). Bark thickness across the angiosperms: More than just fire. New Phytologist, 211, 90–102. https://doi.org/10.1111/nph.13889 PubMed DOI
Rosell, J. A. , Gleason, S. , Méndez‐Alonzo, R. , Chang, Y. , & Westoby, M. (2014). Bark functional ecology: Evidence for tradeoffs, functional coordination, and environment producing bark diversity. New Phytologist, 201, 486–497. https://doi.org/10.1111/nph.12541 PubMed DOI
Schöb, C. , Michalet, R. , Cavieres, L. A. , Pugnaire, F. I. , Brooker, R. W. , Butterfield, B. J. , … Callaway, R. M. (2014). A global analysis of bidirectional interactions in alpine plant communities shows facilitators experiencing strong reciprocal fitness costs. New Phytologist, 202, 95–105. https://doi.org/10.1111/nph.12641 PubMed DOI
Schut, A. G. T. , Wardell‐Johnson, G. W. , Yates, C. J. , Keppel, G. , Baran, I. , Franklin, S. E. , … Byrne, M. (2014). Rapid characterisation of vegetation structure to predict refugia and climate change impacts across a global biodiversity hotspot. PLoS ONE, 9, e82778 https://doi.org/10.1371/journal.pone.0082778 PubMed DOI PMC
Schwilk, D. W. , & Ackerly, D. D. (2005). Limiting similarity and functional diversity along environmental gradients. Ecology Letters, 8, 272–281. https://doi.org/10.1111/ele.2005.8.issue-3 DOI
Siefert, A. , Violle, C. , Chalmandrier, L. , Albert, C. H. , Taudiere, A. , Fajardo, A. , … Wardle, D. A. (2015). A global meta‐analysis of the relative extent of intraspecific trait variation in plant communities. Ecology Letters, 18, 1406–1419. https://doi.org/10.1111/ele.12508 PubMed DOI
Silvertown, J. (2004). Plant coexistence and the niche. Trends in Ecology and Evolution, 19, 605–611. https://doi.org/10.1016/j.tree.2004.09.003 DOI
Spasojevic, M. , & Suding, K. N. (2012). Inferring community assembly mechanisms from functional diversity patterns: The importance of multiple assembly processes. Journal of Ecology, 100, 652–661. https://doi.org/10.1111/j.1365-2745.2011.01945.x DOI
Stubbs, W. J. , & Wilson, J. B. (2004). Evidence for limiting similarity in a sand dune community. Journal of Ecology, 92, 557–567. https://doi.org/10.1111/jec.2004.92.issue-4 DOI
Urbina, I. , Sardans, J. , Grau, O. , Beierkuhnlein, C. , Jentsch, A. , Kreyling, J. , & Peňuelas, J. (2017). Plant community composition affects the species biogeochemical niche. Ecosphere, 8, e01801 https://doi.org/10.1002/ecs2.1801 DOI
Violle, C. , Enquist, B. J. , McGill, B. J. , Jiang, L. , Albert, C. H. , Hulshof, C. , … Messier, J. (2012). The return of the variance: Intraspecific variability in community ecology. Trends in Ecology and Evolution, 27, 244–252. https://doi.org/10.1016/j.tree.2011.11.014 PubMed DOI
Weiher, E. , & Keddy, P. A. (1995). Assembly rules, null models, and trait dispersion: New questions from old patterns. Oikos, 74, 159–164. https://doi.org/10.2307/3545686 DOI
Whittaker, R. H. (1960). Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs, 30, 280–338. https://doi.org/10.2307/1943563 DOI
Dryad
10.5061/dryad.23fg0