The Investigation of the Waveguiding Properties of Silk Fibroin from the Visible to Near-Infrared Spectrum
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
29324711
PubMed Central
PMC5793610
DOI
10.3390/ma11010112
PII: ma11010112
Knihovny.cz E-zdroje
- Klíčová slova
- optical losses, optical planar waveguides, silk fibroin,
- Publikační typ
- časopisecké články MeSH
Silk fibroin protein has been reinvented as a new optical material for biophotonic applications because of its optical transparency, biocompatibility, and easy fabrication process. It is used in various silk-based optical devices, which makes it desirable to investigate the optical properties of silk from diverse perspectives. This paper presents our investigation of the optical properties of silk fibroin, extracted from Bombyx mori cocoons. We have measured transmission spectra from the visible to near-infrared region and investigated waveguiding properties by the prism-coupling technique for five wavelengths (473.0, 632.8, 964.0, 1311, and 1552 nm). From the measurements, we determined the values of refractive indices. The measurements also proved waveguiding properties for all of the wavelengths. Optical scattering losses were measured by the fiber probe technique at 632.8 nm and were estimated to be 0.22 dB·cm-1.
Zobrazit více v PubMed
Lorang D.J., Tanaka D., Spadaccini C.M., Rose K.A., Cherepy N.J., Lewis J.A. Photocurable Liquid Core–fugitive Shell Printing of Optical Waveguides. Adv. Mater. 2011;23:5055–5058. doi: 10.1002/adma.201102411. PubMed DOI
Nizamoglu S., Gather M.C., Humar M., Choi M., Kim S., Kim K.S., Hahn S.K., Scarcelli G., Randolph M., Redmond R.W., et al. Bioabsorbable Polymer Optical Waveguides for Deep-Tissue Photomedicine. Nat. Commun. 2016;7:10374. doi: 10.1038/ncomms10374. PubMed DOI PMC
Kujala S., Mannila A., Karvonen L., Kieu K., Sun Z. Natural Silk as a Photonics Component: A Study on its Light Guiding and Nonlinear Optical Properties. Sci. Rep. 2016;6:22358. doi: 10.1038/srep22358. PubMed DOI PMC
Parker S.T., Domachuk P., Amsden J., Bressner J., Lewis J.A., Kaplan D.L., Omenetto F.G. Biocompatible Silk Printed Optical Waveguides. Adv. Mater. 2009;21:2411–2415. doi: 10.1002/adma.200801580. DOI
Omenetto F.G., Kaplan D.L. A New Route for Silk. Nat. Photonics. 2008;2:641–643. doi: 10.1038/nphoton.2008.207. DOI
Mukundan H., Anderson A.S., Grace W.K., Hartman N., Martinez J.S., Swanson B.I. Waveguide-Based Biosensors for Pathogen Detection. Sensors. 2009;9:5783–5809. doi: 10.3390/s90705783. PubMed DOI PMC
Kim S., Mitropoulos A.N., Spitzberg J.D., Tao H., Kaplan D.L., Omenetto F.G. Silk Inverse Opals. Nat. Photonics. 2012;6:818–823. doi: 10.1038/nphoton.2012.264. DOI
Choi Y., Jeon H., Kim S. A Fully Biocompatible Single-Mode Distributed Feedback Laser. Lab Chip. 2015;15:642–645. doi: 10.1039/C4LC01171F. PubMed DOI
Tao H., Amsden J.J., Strikwerda A.C., Fan K., Kaplan D.L., Zhang X., Averitt R.D., Omenetto F.G. Metamaterial Silk Composites at Terahertz Frequencies. Adv. Mater. 2010;22:3527–3531. doi: 10.1002/adma.201000412. PubMed DOI
Lee M., Jeon H., Kim S. A Highly Tunable and Fully Biocompatible Silk Nanoplasmonic Optical Sensor. Nano Lett. 2015;15:3358–3363. doi: 10.1021/acs.nanolett.5b00680. PubMed DOI
Kwon H., Kim S. Chemically Tunable, Biocompatible, and Cost-Effective Metal−Insulator−Metal Resonators Using Silk Protein and Ultrathin Silver Films. ACS Photonics. 2015;2:1675–1680. doi: 10.1021/acsphotonics.5b00470. DOI
Tsukada M., Gotoh Y., Nagura M., Minoura N., Kasai N., Freddi G. Structural Changes of Silk Fibroin Membranes Induced by Immersion in Methanol Aqueous Solutions. J. Polym. Sci. Part B Polym. Phys. 1994;32:961–968. doi: 10.1002/polb.1994.090320519. DOI
Prajzler V., Nekvindova P., Varga M., Bruncko J., Remes Z., Kromka A. Prism Coupling Technique for Characterization of the High Refractive Index Planar Waveguides. J. Opt. Adv. Mater. 2016;18:915–921.
Pollock C., Lipson M. Integrated Photonics. Kluwer Academic Publishers; Dordrecht, The Netherlands: 2003.
Prajzler V., Nekvindova P., Hyps P., Lyutakov O., Jerabek V. Flexible Polymer Planar Optical Waveguides. Radioengineering. 2014;23:776–782.
Lawrence B.D., Cronin-Golomb M., Georgakoudi I., Kaplan D.L., Omenetto F.G. Bioactive Silk Protein Biomaterial Systems for Optical Devices. Biomacromolecules. 2008;9:1214–1220. doi: 10.1021/bm701235f. PubMed DOI
Refractive Index Database. [(accessed on 22 November 2017)]; Available online: http://refractiveindex.info.
Technical Data Product Information. [(accessed on 22 November 2017)]; Available online: http://www.schott.com/d/advanced_optics/ea165ca6-b4f8-49ee-b989-072ddb2d2e4d/1.0/schott-d-263-t-eco-thin-glass-may-2013-eng.pdf.
Zhou L., Chen X., Shao Z., Zhou P., Knight D.P., Vollrath F. Copper in the Silk Formation Process of Bombyx Mori Silkworm. FEBS Lett. 2003;554:337–341. doi: 10.1016/S0014-5793(03)01184-0. PubMed DOI
Monti P., Freddi G., Bertoluzza A., Kasai N., Tsukada M.J. Raman Spectroscopic Studies of Silk Fibroin from Bombyx Mori. J. Raman Spectrosc. 1998;29:297–304. doi: 10.1002/(SICI)1097-4555(199804)29:4<297::AID-JRS240>3.0.CO;2-G. DOI
Sirichaisit J., Brookes V.L., Young R.J., Vollrath F. Analysis of Structure/Property Relationships in Silkworm (Bombyx mori) and Spider Dragline (Nephila edulis) Silks Using Raman Spectroscopy. Biomacromolecules. 2003;4:387–394. doi: 10.1021/bm0256956. PubMed DOI
Balcytis A., Ryu M., Wang X.W., Novelli F., Seniutinas G., Du S., Wang X.G., Li J.L., Davis J., Appadoo D., et al. Silk: Optical Properties over 12.6 Octaves THz-IR-Visible-UV Range. Materials. 2017;10:356. doi: 10.3390/ma10040356. PubMed DOI PMC
Tien P.K., Ulrich R., Martin R.J. Modes of Propagating Light Waves in Thin Deposited Semiconductor Films. Appl. Phys. Lett. 1969;14:291. doi: 10.1063/1.1652820. DOI
Metricon Corporation. [(accessed on 22 November 2017)]; Available online: www.metricon.com.
Prajzler V., Varga M., Nekvindova P., Remes Z., Kromka A. Design and Investigation of Properties of Nanocrystalline Diamond Optical Planar Waveguides. Opt. Express. 2013;21:8417–8425. doi: 10.1364/OE.21.008417. PubMed DOI
Djemia P., Dugautier C., Chauveau T., Dogheche E., De Barros M.I., Vandenbulcke L. Mechanical Properties of Diamond Flms: A Comparative Study of Polycrystalline and Smooth Fine-Grained Diamonds by Brillouin Light Scattering. J. Appl. Phys. 2001;90:3771–3779. doi: 10.1063/1.1402667. DOI
Prajzler V., Nekvindova P., Spirkova J., Novotny M. Evaluation of the Refractive Indices of Bulk and Thick Polydimethylsiloxane and Polydimethyl-Diphenylsiloxane Elastomers by Prism Coupling Technique. J. Mater. Sci. Mater. Electron. 2017;28:7951–7961. doi: 10.1007/s10854-017-6498-1. DOI
Prajzler V., Nekvindova P., Hyps P., Jerabek V. Properties of the Optical Planar Polymer Waveguides Deposited on Printed Circuit Boards. Radioengineering. 2015;24:442–448. doi: 10.13164/re.2015.0442. DOI
Little D.J., Kane D.M. Measuring the Refractive Index of Spider Silks using Image-Contrast Immersion Methods; Proceedings of the International Quantum Electronics Conference and Conference on Lasers and Electro-Optics Pacific Rim; Sydney, Australia. 28 August–1 September 2011; p. 1726.
Nourshargh N., Starr E.M., Fox N.I., Jones S.G. Simple Technique for Measuring Attenuation of Integrated Optical Waveguides. Electron. Lett. 1985;21:818–820. doi: 10.1049/el:19850577. DOI
Okamura Y., Yoshinaka S., Yamamoto S. Measuring Mode Propagation Losses of Integrated Optical Waveguides: A Simple Method. Appl. Opt. 1983;22:3892–3894. doi: 10.1364/AO.22.003892. PubMed DOI
Prajzler V., Nekvindová P., Hyps P., Jerabek V. Optical Properties of Polymer Planar Waveguides Deposited on Flexible Foils. J. Opt. Adv. Mater. 2015;17:1597–1602.
Huby N., Vié V., Renault A., Beaufils S., Lefèvre T., Paquet-Mercier F., Pézolet M., Bêche B. Native Spider Silk as a Biological Optical Fiber. Appl. Phys. Lett. 2013;102:123702. doi: 10.1063/1.4798552. DOI