The Investigation of the Waveguiding Properties of Silk Fibroin from the Visible to Near-Infrared Spectrum

. 2018 Jan 11 ; 11 (1) : . [epub] 20180111

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29324711

Silk fibroin protein has been reinvented as a new optical material for biophotonic applications because of its optical transparency, biocompatibility, and easy fabrication process. It is used in various silk-based optical devices, which makes it desirable to investigate the optical properties of silk from diverse perspectives. This paper presents our investigation of the optical properties of silk fibroin, extracted from Bombyx mori cocoons. We have measured transmission spectra from the visible to near-infrared region and investigated waveguiding properties by the prism-coupling technique for five wavelengths (473.0, 632.8, 964.0, 1311, and 1552 nm). From the measurements, we determined the values of refractive indices. The measurements also proved waveguiding properties for all of the wavelengths. Optical scattering losses were measured by the fiber probe technique at 632.8 nm and were estimated to be 0.22 dB·cm-1.

Zobrazit více v PubMed

Lorang D.J., Tanaka D., Spadaccini C.M., Rose K.A., Cherepy N.J., Lewis J.A. Photocurable Liquid Core–fugitive Shell Printing of Optical Waveguides. Adv. Mater. 2011;23:5055–5058. doi: 10.1002/adma.201102411. PubMed DOI

Nizamoglu S., Gather M.C., Humar M., Choi M., Kim S., Kim K.S., Hahn S.K., Scarcelli G., Randolph M., Redmond R.W., et al. Bioabsorbable Polymer Optical Waveguides for Deep-Tissue Photomedicine. Nat. Commun. 2016;7:10374. doi: 10.1038/ncomms10374. PubMed DOI PMC

Kujala S., Mannila A., Karvonen L., Kieu K., Sun Z. Natural Silk as a Photonics Component: A Study on its Light Guiding and Nonlinear Optical Properties. Sci. Rep. 2016;6:22358. doi: 10.1038/srep22358. PubMed DOI PMC

Parker S.T., Domachuk P., Amsden J., Bressner J., Lewis J.A., Kaplan D.L., Omenetto F.G. Biocompatible Silk Printed Optical Waveguides. Adv. Mater. 2009;21:2411–2415. doi: 10.1002/adma.200801580. DOI

Omenetto F.G., Kaplan D.L. A New Route for Silk. Nat. Photonics. 2008;2:641–643. doi: 10.1038/nphoton.2008.207. DOI

Mukundan H., Anderson A.S., Grace W.K., Hartman N., Martinez J.S., Swanson B.I. Waveguide-Based Biosensors for Pathogen Detection. Sensors. 2009;9:5783–5809. doi: 10.3390/s90705783. PubMed DOI PMC

Kim S., Mitropoulos A.N., Spitzberg J.D., Tao H., Kaplan D.L., Omenetto F.G. Silk Inverse Opals. Nat. Photonics. 2012;6:818–823. doi: 10.1038/nphoton.2012.264. DOI

Choi Y., Jeon H., Kim S. A Fully Biocompatible Single-Mode Distributed Feedback Laser. Lab Chip. 2015;15:642–645. doi: 10.1039/C4LC01171F. PubMed DOI

Tao H., Amsden J.J., Strikwerda A.C., Fan K., Kaplan D.L., Zhang X., Averitt R.D., Omenetto F.G. Metamaterial Silk Composites at Terahertz Frequencies. Adv. Mater. 2010;22:3527–3531. doi: 10.1002/adma.201000412. PubMed DOI

Lee M., Jeon H., Kim S. A Highly Tunable and Fully Biocompatible Silk Nanoplasmonic Optical Sensor. Nano Lett. 2015;15:3358–3363. doi: 10.1021/acs.nanolett.5b00680. PubMed DOI

Kwon H., Kim S. Chemically Tunable, Biocompatible, and Cost-Effective Metal−Insulator−Metal Resonators Using Silk Protein and Ultrathin Silver Films. ACS Photonics. 2015;2:1675–1680. doi: 10.1021/acsphotonics.5b00470. DOI

Tsukada M., Gotoh Y., Nagura M., Minoura N., Kasai N., Freddi G. Structural Changes of Silk Fibroin Membranes Induced by Immersion in Methanol Aqueous Solutions. J. Polym. Sci. Part B Polym. Phys. 1994;32:961–968. doi: 10.1002/polb.1994.090320519. DOI

Prajzler V., Nekvindova P., Varga M., Bruncko J., Remes Z., Kromka A. Prism Coupling Technique for Characterization of the High Refractive Index Planar Waveguides. J. Opt. Adv. Mater. 2016;18:915–921.

Pollock C., Lipson M. Integrated Photonics. Kluwer Academic Publishers; Dordrecht, The Netherlands: 2003.

Prajzler V., Nekvindova P., Hyps P., Lyutakov O., Jerabek V. Flexible Polymer Planar Optical Waveguides. Radioengineering. 2014;23:776–782.

Lawrence B.D., Cronin-Golomb M., Georgakoudi I., Kaplan D.L., Omenetto F.G. Bioactive Silk Protein Biomaterial Systems for Optical Devices. Biomacromolecules. 2008;9:1214–1220. doi: 10.1021/bm701235f. PubMed DOI

Refractive Index Database. [(accessed on 22 November 2017)]; Available online: http://refractiveindex.info.

Technical Data Product Information. [(accessed on 22 November 2017)]; Available online: http://www.schott.com/d/advanced_optics/ea165ca6-b4f8-49ee-b989-072ddb2d2e4d/1.0/schott-d-263-t-eco-thin-glass-may-2013-eng.pdf.

Zhou L., Chen X., Shao Z., Zhou P., Knight D.P., Vollrath F. Copper in the Silk Formation Process of Bombyx Mori Silkworm. FEBS Lett. 2003;554:337–341. doi: 10.1016/S0014-5793(03)01184-0. PubMed DOI

Monti P., Freddi G., Bertoluzza A., Kasai N., Tsukada M.J. Raman Spectroscopic Studies of Silk Fibroin from Bombyx Mori. J. Raman Spectrosc. 1998;29:297–304. doi: 10.1002/(SICI)1097-4555(199804)29:4<297::AID-JRS240>3.0.CO;2-G. DOI

Sirichaisit J., Brookes V.L., Young R.J., Vollrath F. Analysis of Structure/Property Relationships in Silkworm (Bombyx mori) and Spider Dragline (Nephila edulis) Silks Using Raman Spectroscopy. Biomacromolecules. 2003;4:387–394. doi: 10.1021/bm0256956. PubMed DOI

Balcytis A., Ryu M., Wang X.W., Novelli F., Seniutinas G., Du S., Wang X.G., Li J.L., Davis J., Appadoo D., et al. Silk: Optical Properties over 12.6 Octaves THz-IR-Visible-UV Range. Materials. 2017;10:356. doi: 10.3390/ma10040356. PubMed DOI PMC

Tien P.K., Ulrich R., Martin R.J. Modes of Propagating Light Waves in Thin Deposited Semiconductor Films. Appl. Phys. Lett. 1969;14:291. doi: 10.1063/1.1652820. DOI

Metricon Corporation. [(accessed on 22 November 2017)]; Available online: www.metricon.com.

Prajzler V., Varga M., Nekvindova P., Remes Z., Kromka A. Design and Investigation of Properties of Nanocrystalline Diamond Optical Planar Waveguides. Opt. Express. 2013;21:8417–8425. doi: 10.1364/OE.21.008417. PubMed DOI

Djemia P., Dugautier C., Chauveau T., Dogheche E., De Barros M.I., Vandenbulcke L. Mechanical Properties of Diamond Flms: A Comparative Study of Polycrystalline and Smooth Fine-Grained Diamonds by Brillouin Light Scattering. J. Appl. Phys. 2001;90:3771–3779. doi: 10.1063/1.1402667. DOI

Prajzler V., Nekvindova P., Spirkova J., Novotny M. Evaluation of the Refractive Indices of Bulk and Thick Polydimethylsiloxane and Polydimethyl-Diphenylsiloxane Elastomers by Prism Coupling Technique. J. Mater. Sci. Mater. Electron. 2017;28:7951–7961. doi: 10.1007/s10854-017-6498-1. DOI

Prajzler V., Nekvindova P., Hyps P., Jerabek V. Properties of the Optical Planar Polymer Waveguides Deposited on Printed Circuit Boards. Radioengineering. 2015;24:442–448. doi: 10.13164/re.2015.0442. DOI

Little D.J., Kane D.M. Measuring the Refractive Index of Spider Silks using Image-Contrast Immersion Methods; Proceedings of the International Quantum Electronics Conference and Conference on Lasers and Electro-Optics Pacific Rim; Sydney, Australia. 28 August–1 September 2011; p. 1726.

Nourshargh N., Starr E.M., Fox N.I., Jones S.G. Simple Technique for Measuring Attenuation of Integrated Optical Waveguides. Electron. Lett. 1985;21:818–820. doi: 10.1049/el:19850577. DOI

Okamura Y., Yoshinaka S., Yamamoto S. Measuring Mode Propagation Losses of Integrated Optical Waveguides: A Simple Method. Appl. Opt. 1983;22:3892–3894. doi: 10.1364/AO.22.003892. PubMed DOI

Prajzler V., Nekvindová P., Hyps P., Jerabek V. Optical Properties of Polymer Planar Waveguides Deposited on Flexible Foils. J. Opt. Adv. Mater. 2015;17:1597–1602.

Huby N., Vié V., Renault A., Beaufils S., Lefèvre T., Paquet-Mercier F., Pézolet M., Bêche B. Native Spider Silk as a Biological Optical Fiber. Appl. Phys. Lett. 2013;102:123702. doi: 10.1063/1.4798552. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace