A critical comparison of topology-based pathway analysis methods
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
PubMed
29370226
PubMed Central
PMC5784953
DOI
10.1371/journal.pone.0191154
PII: PONE-D-17-09750
Knihovny.cz E-zdroje
- MeSH
- databáze genetické MeSH
- datové soubory jako téma MeSH
- lidé MeSH
- metabolické sítě a dráhy * MeSH
- stanovení celkové genové exprese metody MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
One of the aims of high-throughput gene/protein profiling experiments is the identification of biological processes altered between two or more conditions. Pathway analysis is an umbrella term for a multitude of computational approaches used for this purpose. While in the beginning pathway analysis relied on enrichment-based approaches, a newer generation of methods is now available, exploiting pathway topologies in addition to gene/protein expression levels. However, little effort has been invested in their critical assessment with respect to their performance in different experimental setups. Here, we assessed the performance of seven representative methods identifying differentially expressed pathways between two groups of interest based on gene expression data with prior knowledge of pathway topologies: SPIA, PRS, CePa, TAPPA, TopologyGSA, Clipper and DEGraph. We performed a number of controlled experiments that investigated their sensitivity to sample and pathway size, threshold-based filtering of differentially expressed genes, ability to detect target pathways, ability to exploit the topological information and the sensitivity to different pre-processing strategies. We also verified type I error rates and described the influence of overexpression of single genes, gene sets and topological motifs of various sizes on the detection of a pathway as differentially expressed. The results of our experiments demonstrate a wide variability of the tested methods. We provide a set of recommendations for an informed selection of the proper method for a given data analysis task.
Zobrazit více v PubMed
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences of the United States of America. 2005;102(43):15545–15550. doi: 10.1073/pnas.0506580102 PubMed DOI PMC
Khatri P, Sirota M, Butte AJ. Ten Years of Pathway Analysis: Current Approaches and Outstanding Challenges. PLoS Comput Biol. 2012;8(2):e1002375 doi: 10.1371/journal.pcbi.1002375 PubMed DOI PMC
Emmert-Streib F, Tripathi S, Matos Simoes Rd. Harnessing the complexity of gene expression data from cancer: from single gene to structural pathway methods. Biology Direct. 2012;7(1):44 doi: 10.1186/1745-6150-7-44 PubMed DOI PMC
García-Campos MA, Espinal-Enríquez J, Hernández-Lemus E. Pathway Analysis: State of the Art. Frontiers in Physiology. 2015;6:383 doi: 10.3389/fphys.2015.00383 PubMed DOI PMC
Bayerlová M, Jung K, Kramer F, Klemm F, Bleckmann A, Beißbarth T. Comparative study on gene set and pathway topology-based enrichment methods. BMC Bioinformatics. 2015;16(1):334 doi: 10.1186/s12859-015-0751-5 PubMed DOI PMC
Braun R, Shah S. Network Methods for Pathway Analysis of Genomic Data; 2015.
Gu Z, Liu J, Cao K, Zhang J, Wang J. Centrality-based pathway enrichment: a systematic approach for finding significant pathways dominated by key genes. BMC Systems Biology. 2012;6(1):56 doi: 10.1186/1752-0509-6-56 PubMed DOI PMC
Mitrea C, Taghavi Z, Bokanizad B, Hanoudi S, Tagett R, Donato M, et al. Methods and approaches in the topology-based analysis of biological pathways. Frontiers in Physiology. 2013;4:278 doi: 10.3389/fphys.2013.00278 PubMed DOI PMC
Tarca AL, Draghici S, Khatri P, Hassan SS, Mittal P, Kim Js, et al. A novel signaling pathway impact analysis. Bioinformatics. 2009;25(1):75–82. doi: 10.1093/bioinformatics/btn577 PubMed DOI PMC
Al-Haj Ibrahim M, Jassim S, Cawthorne MA, Langlands K. A Topology-Based Score for Pathway Enrichment. J Comput Biol. 2012;. PubMed
Gao S, Wang X. TAPPA: topological analysis of pathway phenotype association. Bioinformatics. 2007;23(22):3100–3102. doi: 10.1093/bioinformatics/btm460 PubMed DOI PMC
Massa M, Chiogna M, Romualdi C. Gene set analysis exploiting the topology of a pathway. BMC Systems Biology. 2010;4(1):121 doi: 10.1186/1752-0509-4-121 PubMed DOI PMC
Martini P, Sales G, Massa MS, Chiogna M, Romualdi C. Along signal paths: an empirical gene set approach exploiting pathway topology. Nucleic Acids Research. 2012; doi: 10.1093/nar/gks866 PubMed DOI PMC
Jacob L, Neuvial P, Dudoit S. Gains in Power from Structured Two-Sample Tests of Means on Graphs. ArXiv e-prints. 2010;.
Smyth GK. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Statistical applications in genetics and molecular biology. 2004;3(1). doi: 10.2202/1544-6115.1027 PubMed DOI
R Core Team. R: A Language and Environment for Statistical Computing; 2014. Available from: http://www.R-project.org/.
Huber W, Carey J V, Gentleman R, et al. Orchestrating high-throughput genomic analysis with Bioconductor. Nature Methods. 2015;12(2):115–121. doi: 10.1038/nmeth.3252 PubMed DOI PMC
Sales G, Calura E, Romualdi C. graphite: GRAPH Interaction from pathway Topological Environment; 2016.
Ihnatova I, Budinska E. ToPASeq: an R package for topology-based pathway analysis of microarray and RNA-Seq data. BMC Bioinformatics. 2015;16(1):350 doi: 10.1186/s12859-015-0763-1 PubMed DOI PMC
Draghici S, Khatri P, Tarca AL, Amin K, Done A, Voichita C, et al. A systems biology approach for pathway level analysis. Genome Research. 2007;17(10):000 doi: 10.1101/gr.6202607 PubMed DOI PMC
Khatri P, Draghici S, Tarca AL, Hassan SS, Romero R. A system biology approach for the steady-state analysis of gene signaling networks. In: Proceedings of the Congress on pattern recognition 12th Iberoamerican conference on Progress in pattern recognition, image analysis and applications. CIARP’07. Berlin, Heidelberg: Springer-Verlag; 2007. p. 32–41. Available from: http://dl.acm.org/citation.cfm?id=1782914.1782919.
Junker BH, Schreiber F. Analysis of Biological Networks Wiley Series in Bioinformatics. Wiley; 2011. Available from: https://books.google.cz/books?id=YeXLbClh1SIC.
Kim JW, Mori S, Nevins JR. Myc-Induced MicroRNAs Integrate Myc-Mediated Cell Proliferation and Cell Fate. Cancer Research. 2010;70(12):4820–4828. doi: 10.1158/0008-5472.CAN-10-0659 PubMed DOI PMC
Bild AH, Yao G, Chang JT, Wang Q, Potti A, Chasse D, et al. Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature. 2006;439(7074):353–7. doi: 10.1038/nature04296 PubMed DOI
Haibe-Kains B, Desmedt C, Loi S, Culhane AC, Bontempi G, Quackenbush J, et al. A three-gene model to robustly identify breast cancer molecular subtypes. Journal of the National Cancer Institute. 2012;104(4):311–325. doi: 10.1093/jnci/djr545 PubMed DOI PMC
Bhatti G, Tarca AL. KEGGdzPathwaysGEO: KEGG Disease Datasets from GEO; 2012.
Bhatti G. KEGGandMetacoreDzPathwaysGEO: Disease Datasets from GEO; 2014.
Sales G, Calura E, Cavalieri D, Romualdi C. graphite—a Bioconductor package to convert pathway topology to gene network. BMC Bioinformatics. 2012;13(1):20 doi: 10.1186/1471-2105-13-20 PubMed DOI PMC
Tripathi S, Emmert-Streib F. Assessment Method for a Power Analysis to Identify Differentially Expressed Pathways. PLOS ONE. 2012;7(5):1–13. doi: 10.1371/journal.pone.0037510 PubMed DOI PMC
Karlin S, Mrázek J, Campbell A, Kaiser D. Characterizations of Highly Expressed Genes of Four Fast-Growing Bacteria. J Bacteriol. 2001;183(17):5025–5040. doi: 10.1128/JB.183.17.5025-5040.2001 PubMed DOI PMC