Chromothripsis 18 in multiple myeloma patient with rapid extramedullary relapse
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu kazuistiky, časopisecké články
PubMed
29375670
PubMed Central
PMC5774134
DOI
10.1186/s13039-018-0357-5
PII: 357
Knihovny.cz E-zdroje
- Klíčová slova
- Array-CGH, Chromothripsis, Multiple myeloma, Mutation screening, NGS,
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
BACKGROUND: Catastrophic chromosomal event known as chromothripsis was proven to be a significant hallmark of poor prognosis in several cancer diseases. While this phenomenon is very rare in among multiple myeloma (MM) patients, its presence in karyotype is associated with very poor prognosis. CASE PRESENTATION: In our case, we report a 62 year female patient with rapid progression of multiple myeloma (MM) into extramedullary disease and short overall survival (OS = 23 months). I-FISH investigation revealed presence of gain 1q21 and hyperdiploidy (+ 5,+ 9,+ 15) in 82% and 86%, respectively, while IgH rearrangements, del(17)(p13) and del(13)(q14) were evaluated as negative.Whole-genome profiling using array-CGH showed complex genomic changes including hyperdiploidy (+ 3,+ 5,+ 9,+ 11, + 15,+ 19), monosomy X, structural gains (1q21-1q23.1, 1q32-1q44, 16p13.13-16p11.2) and losses (1q23.1-1q32.1; 8p23.3-8p11.21) of genetic material and chromothripsis in chromosome 18 with 6 breakpoint areas. Next-generation sequencing showed a total of 338 variants with 1.8% (6/338) of pathological mutations in NRAS (c.181C > A; p.Gln61Lys) or variants of unknown significance in TP53, CUX1 and POU4F1. CONCLUSIONS: Our findings suggest that presence of chromothripsis should be considered as another important genetic hallmark of poor prognosis in MM patients and utilization of genome-wide screening techniques such as array-CGH and NGS improves the clinical diagnostics of the disease.
Zobrazit více v PubMed
Durie BG, et al. International uniform response criteria for multiple myeloma. Leukemia. 2006;20(9):1467–1473. doi: 10.1038/sj.leu.2404284. PubMed DOI
Morgan GJ, Walker BA, Davies FE. The genetic architecture of multiple myeloma. Nat Rev Cancer. 2012;12(5):335–348. doi: 10.1038/nrc3257. PubMed DOI
Sonneveld P, et al. Bortezomib-based versus nonbortezomib-based induction treatment before autologous stem-cell transplantation in patients with previously untreated multiple myeloma: a meta-analysis of phase III randomized, controlled trials. J Clin Oncol. 2013;31(26):3279–3287. doi: 10.1200/JCO.2012.48.4626. PubMed DOI
Laubach J, et al. Management of relapsed multiple myeloma: recommendations of the international myeloma working group. Leukemia. 2016;30(5):1005–1017. doi: 10.1038/leu.2015.356. PubMed DOI
Chapman MA, et al. Initial genome sequencing and analysis of multiple myeloma. Nature. 2011;471(7339):467–472. doi: 10.1038/nature09837. PubMed DOI PMC
Egan JB, et al. Whole-genome sequencing of multiple myeloma from diagnosis to plasma cell leukemia reveals genomic initiating events, evolution, and clonal tides. Blood. 2012;120(5):1060–1066. doi: 10.1182/blood-2012-01-405977. PubMed DOI PMC
Mikulasova A, et al. Genomewide profiling of copy-number alteration in monoclonal gammopathy of undetermined significance. Eur J Haematol. 2016;97(6):568–575. doi: 10.1111/ejh.12774. PubMed DOI
Mikulasova A, et al. Somatic mutation spectrum in monoclonal gammopathy of undetermined significance indicates a less complex genomic landscape compared to multiple myeloma. Haematologica. 2017; PubMed PMC
Walker BA, et al. A compendium of myeloma-associated chromosomal copy number abnormalities and their prognostic value. Blood. 2010;116(15):e56–e65. doi: 10.1182/blood-2010-04-279596. PubMed DOI
Walker BA, et al. Integration of global SNP-based mapping and expression arrays reveals key regions, mechanisms, and genes important in the pathogenesis of multiple myeloma. Blood. 2006;108(5):1733–1743. doi: 10.1182/blood-2006-02-005496. PubMed DOI
Keats JJ, et al. Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma. Cancer Cell. 2007;12(2):131–144. doi: 10.1016/j.ccr.2007.07.003. PubMed DOI PMC
Keats JJ, et al. Clonal competition with alternating dominance in multiple myeloma. Blood. 2012;120(5):1067–1076. doi: 10.1182/blood-2012-01-405985. PubMed DOI PMC
Heng HH, et al. Evolutionary mechanisms and diversity in cancer. Adv Cancer Res. 2011;112:217–253. doi: 10.1016/B978-0-12-387688-1.00008-9. PubMed DOI
Liu G, et al. Genome chaos: survival strategy during crisis. Cell Cycle. 2014;13(4):528–537. doi: 10.4161/cc.27378. PubMed DOI PMC
Stephens PJ, et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell. 2011;144(1):27–40. doi: 10.1016/j.cell.2010.11.055. PubMed DOI PMC
Kloosterman WP, et al. Constitutional chromothripsis rearrangements involve clustered double-stranded DNA breaks and nonhomologous repair mechanisms. Cell Rep. 2012;1(6):648–655. doi: 10.1016/j.celrep.2012.05.009. PubMed DOI
Skuja E, et al. Chromothripsis and progression-free survival in metastatic colorectal cancer. Mol Clin Oncol. 2017;6(2):182–186. doi: 10.3892/mco.2017.1123. PubMed DOI PMC
Smida J, et al. Genome-wide analysis of somatic copy number alterations and chromosomal breakages in osteosarcoma. Int J Cancer. 2017;141(4):816–828. doi: 10.1002/ijc.30778. PubMed DOI
Middelkamp S, et al. Molecular dissection of germline chromothripsis in a developmental context using patient-derived iPS cells. Genome Med. 2017;9(1):9. doi: 10.1186/s13073-017-0399-z. PubMed DOI PMC
Magrangeas F, et al. Chromothripsis identifies a rare and aggressive entity among newly diagnosed multiple myeloma patients. Blood. 2011;118(3):675–678. doi: 10.1182/blood-2011-03-344069. PubMed DOI PMC
Cumova J, et al. Optimization of immunomagnetic selection of myeloma cells from bone marrow using magnetic activated cell sorting. Int J Hematol. 2010;92(2):314–319. doi: 10.1007/s12185-010-0651-4. PubMed DOI
Rajan AM, Rajkumar SV. Interpretation of cytogenetic results in multiple myeloma for clinical practice. Blood Cancer J. 2015;5:e365. doi: 10.1038/bcj.2015.92. PubMed DOI PMC
Palumbo A, et al. Revised international staging system for multiple myeloma: a report from international myeloma working group. J Clin Oncol. 2015;33(26):2863–2869. doi: 10.1200/JCO.2015.61.2267. PubMed DOI PMC
Fonseca R, et al. International myeloma working group molecular classification of multiple myeloma: spotlight review. Leukemia. 2009;23(12):2210–2221. doi: 10.1038/leu.2009.174. PubMed DOI PMC
Fonseca R, et al. The recurrent IgH translocations are highly associated with nonhyperdiploid variant multiple myeloma. Blood. 2003;102(7):2562–7. doi: 10.1182/blood-2003-02-0493. PubMed DOI
Nemec P, et al. Gain of 1q21 is an unfavorable genetic prognostic factor for multiple myeloma patients treated with high-dose chemotherapy. Biol Blood Marrow Transplant. 2010;16(4):548–554. doi: 10.1016/j.bbmt.2009.11.025. PubMed DOI
Greslikova H, et al. Negative prognostic significance of two or more cytogenetic abnormalities in multiple myeloma patients treated with autologous stem cell transplantation. Neoplasma. 2010;57(2):111–117. doi: 10.4149/neo_2010_02_111. PubMed DOI
Smetana J, et al. Gain(1)(q21) is an unfavorable genetic prognostic factor for patients with relapsed multiple myeloma treated with thalidomide but not for those treated with bortezomib. Clin Lymphoma Myeloma Leuk. 2013;13(2):123–130. doi: 10.1016/j.clml.2012.11.012. PubMed DOI
Lagana A, et al. Integrative network analysis identifies novel drivers of pathogenesis and progression in newly diagnosed multiple myeloma. Leukemia. 2018;32(1):120–30. 10.1038/leu.2017.197. PubMed
Lohr JG, et al. Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy. Cancer Cell. 2014;25(1):91–101. doi: 10.1016/j.ccr.2013.12.015. PubMed DOI PMC
Sonneveld P, et al. Treatment of multiple myeloma with high-risk cytogenetics: a consensus of the international myeloma working group. Blood. 2016;127(24):2955–2962. doi: 10.1182/blood-2016-01-631200. PubMed DOI PMC
Poot M. Of simple and complex genome rearrangements, Chromothripsis, Chromoanasynthesis, and chromosome chaos. Mol Syndromol. 2017;8(3):115–117. doi: 10.1159/000454964. PubMed DOI PMC
Kloosterman WP, Koster J, Molenaar JJ. Prevalence and clinical implications of chromothripsis in cancer genomes. Curr Opin Oncol. 2014;26(1):64–72. doi: 10.1097/CCO.0000000000000038. PubMed DOI
Smetana J, et al. Genome-wide screening of cytogenetic abnormalities in multiple myeloma patients using array-CGH technique: a Czech multicenter experience. Biomed Res Int. 2014;2014:209670. doi: 10.1155/2014/209670. PubMed DOI PMC
Maciejowski J, de Lange T. Telomeres in cancer: tumour suppression and genome instability. Nat Rev Mol Cell Biol. 2017;18(3):175–186. doi: 10.1038/nrm.2016.171. PubMed DOI PMC
Bolli N, et al. A DNA target-enrichment approach to detect mutations, copy number changes and immunoglobulin translocations in multiple myeloma. Blood Cancer J. 2016;6(9):e467. doi: 10.1038/bcj.2016.72. PubMed DOI PMC
Weinhold N, et al. Clonal selection and double-hit events involving tumor suppressor genes underlie relapse in myeloma. Blood. 2016;128(13):1735–1744. doi: 10.1182/blood-2016-06-723007. PubMed DOI PMC
Chng WJ, et al. Correlation between array-comparative genomic hybridization-defined genomic gains and losses and survival: identification of 1p31-32 deletion as a prognostic factor in myeloma. Leukemia. 2010;24(4):833–842. doi: 10.1038/leu.2010.21. PubMed DOI PMC
Walker BA, Morgan GJ. Use of single nucleotide polymorphism-based mapping arrays to detect copy number changes and loss of heterozygosity in multiple myeloma. Clin Lymphoma Myeloma. 2006;7(3):186–191. doi: 10.3816/CLM.2006.n.057. PubMed DOI
Jimenez C, et al. A next-generation sequencing strategy for evaluating the most common genetic abnormalities in multiple myeloma. J Mol Diagn. 2017;19(1):99–106. doi: 10.1016/j.jmoldx.2016.08.004. PubMed DOI
Kortum KM, et al. Targeted sequencing using a 47 gene multiple myeloma mutation panel (M(3) P) in -17p high risk disease. Br J Haematol. 2015;168(4):507–510. doi: 10.1111/bjh.13171. PubMed DOI PMC
Ng PC, Henikoff S. Predicting deleterious amino acid substitutions. Genome Res. 2001;11(5):863–874. doi: 10.1101/gr.176601. PubMed DOI PMC