An efficient copper-based magnetic nanocatalyst for the fixation of carbon dioxide at atmospheric pressure

. 2018 Jan 30 ; 8 (1) : 1901. [epub] 20180130

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29382886
Odkazy

PubMed 29382886
PubMed Central PMC5789884
DOI 10.1038/s41598-018-19551-3
PII: 10.1038/s41598-018-19551-3
Knihovny.cz E-zdroje

In the last few decades, the emission of carbon dioxide (CO2) in the environment has caused havoc across the globe. One of the most promising strategies for fixation of CO2 is the cycloaddition reaction between epoxides and CO2 to produce cyclic carbonates. For the first time, we have fabricated copper-based magnetic nanocatalyst and have applied for the CO2 fixation. The prepared catalyst was thoroughly characterized using various techniques including XRD, FT-IR, TEM, FE-SEM, XPS, VSM, ICP-OES and elemental mapping. The reactions proceeded at atmospheric pressure, relatively lower temperature, short reaction time, solvent- less and organic halide free reaction conditions. Additionally, the ease of recovery through an external magnet, reusability of the catalyst and excellent yields of the obtained cyclic carbonates make the present protocol practical and sustainable.

Zobrazit více v PubMed

Olah GA, Goeppert A, Prakash GS. Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons. J. Org. Chem. 2008;74:487–498. doi: 10.1021/jo801260f. PubMed DOI

Canadell JG, et al. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc. Natl. Acad. Sci. 2007;104:18866–18870. doi: 10.1073/pnas.0702737104. PubMed DOI PMC

Kenarsari SD, et al. Review of recent advances in carbon dioxide separation and capture. RSC Adv. 2013;3:22739–22773. doi: 10.1039/c3ra43965h. DOI

Gurkan BE, et al. Equimolar CO2 absorption by anion-functionalized ionic liquids. J. Am. Chem. Soc. 2010;132:2116–2117. doi: 10.1021/ja909305t. PubMed DOI

Markewitz P, et al. Worldwide innovations in the development of carbon capture technologies and the utilization of CO2. Energy Environ. Sci. 2012;5:7281–7305. doi: 10.1039/c2ee03403d. DOI

Xiaoding X, Moulijn J. Mitigation of CO2 by chemical conversion: plausible chemical reactions and promising products. Energy Fuels. 1996;10:305–325. doi: 10.1021/ef9501511. DOI

Tlili A, Frogneux X, Blondiaux E, Cantat T. Creating added value with a waste: methylation of amines with CO2 and H2. Angew. Chem., Int. Ed. 2014;53:2543–2545. doi: 10.1002/anie.201310337. PubMed DOI

Mikkelsen M, Jørgensen M, Krebs FC. The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ. Sci. 2010;3:43–81. doi: 10.1039/B912904A. DOI

Aresta M, Dibenedetto A, Angelini A. Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. Technological use of CO2. Chem. Rev. 2013;114:1709–1742. doi: 10.1021/cr4002758. PubMed DOI

Cokoja M, Bruckmeier C, Rieger B, Herrmann WA, Kühn FE. Transformation of carbon dioxide with homogeneous transition‐metal catalysts: a molecular solution to a global challenge? Angew. Chem., Int. Ed. 2011;50:8510–8537. doi: 10.1002/anie.201102010. PubMed DOI

Visconti CG, et al. Appl. Catal., A. 2009. Fischer–Tropsch synthesis on a Co/Al2O3 catalyst with CO2 containing syngas; pp. 61–68.

Liu Q, Wu L, Jackstell R, Beller M. Using carbon dioxide as a building block in organic synthesis. Nat. Commun. 2015;6:5933. doi: 10.1038/ncomms6933. PubMed DOI

Trost BM. On inventing reactions for atom economy. Acc. Chem. Res. 2002;35:695–705. doi: 10.1021/ar010068z. PubMed DOI

Clements JH. Reactive applications of cyclic alkylene carbonates. Ind. Eng. Chem. Res. 2003;42:663–674. doi: 10.1021/ie020678i. DOI

Patel M, et al. Sch 31828, a novel antibiotic from a Microbispora sp.: taxonomy, fermentation, isolation and biological properties. J. Antibiot. 1988;41:794–797. doi: 10.7164/antibiotics.41.794. PubMed DOI

Yoshida M, Ihara M. Novel methodologies for the synthesis of cyclic carbonates. Chem. - Eur. J. 2004;10:2886–2893. doi: 10.1002/chem.200305583. PubMed DOI

Desens W, Werner T. Convergent activation concept for CO2 fixation in carbonates. Adv. Synth. Catal. 2016;358:622–630. doi: 10.1002/adsc.201500941. DOI

Ema T, et al. Quaternary ammonium hydroxide as a metal-free and halogen-free catalyst for the synthesis of cyclic carbonates from epoxides and carbon dioxide. Catal. Sci. Technol. 2015;5:2314–2321. doi: 10.1039/C5CY00020C. DOI

Elmas S, et al. Highly active Cr(iii) catalysts for the reaction of CO2 with epoxides. Catal. Sci. Technol. 2014;4:1652–1657. doi: 10.1039/C3CY01087B. DOI

Martin C, et al. Easily accessible bifunctional Zn(salpyr) catalysts for the formation of organic carbonates. Catal. Sci. Technol. 2014;4:1615–1621. doi: 10.1039/C3CY01043K. DOI

Taherimehr M, Al-Amsyar SM, Whiteoak CJ, Kleij AW, Pescarmona PP. High activity and switchable selectivity in the synthesis of cyclic and polymeric cyclohexene carbonates with iron amino triphenolate catalysts. Green Chem. 2013;15:3083–3090. doi: 10.1039/c3gc41303a. DOI

Wang J-Q, Dong K, Cheng W-G, Sun J, Zhang S-J. Insights into quaternary ammonium salts-catalyzed fixation carbon dioxide with epoxides. Catal. Sci. Technol. 2012;2:1480–1484. doi: 10.1039/c2cy20103h. DOI

Whiteoak CJ, Martin E, Belmonte MM, Benet‐Buchholz J, Kleij AW. An efficient iron catalyst for the synthesis of five‐ and six‐membered organic carbonates under mild conditions. Adv. Synth. Catal. 2012;354:469–476. doi: 10.1002/adsc.201100752. DOI

Zhou H, Wang Y-M, Zhang W-Z, Qu J-P, Lu X-B. N-heterocyclic carbene functionalized MCM-41 as an efficient catalyst for chemical fixation of carbon dioxide. Green Chem. 2011;13:644–650. doi: 10.1039/c0gc00541j. DOI

Paddock RL, Hiyama Y, McKay JM, Nguyen ST. Co(III) porphyrin/DMAP: an efficient catalyst system for the synthesis of cyclic carbonates from CO2 and epoxides. Tetrahedron Lett. 2004;45:2023–2026. doi: 10.1016/j.tetlet.2003.10.101. DOI

Ema T, Miyazaki Y, Shimonishi J, Maeda C. & Hasegawa, J.-y. Bifunctional porphyrin catalysts for the synthesis of cyclic carbonates from epoxides and CO2: structural optimization and mechanistic study. J. Am. Chem. Soc. 2014;136:15270–15279. doi: 10.1021/ja507665a. PubMed DOI

Jung Y, et al. Rh(0)/Rh(iii) core–shell nanoparticles as heterogeneous catalysts for cyclic carbonate synthesis. Chem. Commun. 2017;53:384–387. doi: 10.1039/C6CC08318H. PubMed DOI

Liu M, et al. Design of bifunctional NH3I-Zn/SBA-15 single-component heterogeneous catalyst for chemical fixation of carbon dioxide to cyclic carbonates. J. Mol. Catal. A: Chem. 2016;418:78–85. doi: 10.1016/j.molcata.2016.03.037. DOI

Bhin KM, et al. Catalytic performance of zeolitic imidazolate framework ZIF-95 for the solventless synthesis of cyclic carbonates from CO2 and epoxides. J. CO2 Util. 2017;17:112–118. doi: 10.1016/j.jcou.2016.12.001. DOI

Saptal VB, Bhanage BM. Bifunctional ionic liquids derived from biorenewable sources as sustainable catalysts for fixation of carbon dioxide. ChemSusChem. 2017;10:1145–1151. doi: 10.1002/cssc.201601228. PubMed DOI

Clegg W, Harrington RW, North M, Pasquale R. Cyclic carbonate synthesis catalysed by bimetallic aluminium–salen complexes. Chem. - Eur. J. 2010;16:6828–6843. doi: 10.1002/chem.201000030. PubMed DOI

Yang Z-Z, Zhao Y-N, He L-N, Gao J, Yin Z-S. Highly efficient conversion of carbon dioxide catalyzed by polyethylene glycol-functionalized basic ionic liquids. Green Chem. 2012;14:519–527. doi: 10.1039/c2gc16039k. DOI

Wang L, Zhang G, Kodama K, Hirose T. An efficient metal- and solvent-free organocatalytic system for chemical fixation of CO2 into cyclic carbonates under mild conditions. Green Chem. 2016;18:1229–1233. doi: 10.1039/C5GC02697K. DOI

Motokura K, Itagaki S, Iwasawa Y, Miyaji A, Baba T. Silica-supported aminopyridinium halides for catalytic transformations of epoxides to cyclic carbonates under atmospheric pressure of carbon dioxide. Green Chem. 2009;11:1876–1880. doi: 10.1039/b916764c. DOI

Han Y-H, Zhou Z-Y, Tian C-B, Du S-W. A dual-walled cage MOF as an efficient heterogeneous catalyst for the conversion of CO2 under mild and co-catalyst free conditions. Green Chem. 2016;18:4086–4091. doi: 10.1039/C6GC00413J. DOI

Dai Z, et al. Metalated porous porphyrin polymers as efficient heterogeneous catalysts for cycloaddition of epoxides with CO2 under ambient conditions. J. Catal. 2016;338:202–209. doi: 10.1016/j.jcat.2016.03.005. DOI

Talapaneni SN, et al. Nanoporous polymers incorporating sterically confined N-heterocyclic carbenes for simultaneous CO2 capture and conversion at ambient pressure. Chem. Mater. 2015;27:6818–6826. doi: 10.1021/acs.chemmater.5b03104. DOI

Zheng J, Wu M, Jiang F, Su W, Hong M. Stable porphyrin Zr and Hf metal–organic frameworks featuring 2.5 nm cages: high surface areas, SCSC transformations and catalyses. Chem. Sci. 2015;6:3466–3470. doi: 10.1039/C5SC00213C. PubMed DOI PMC

Gao WY, et al. Crystal engineering of an nbo topology metal–organic framework for chemical fixation of CO2 under ambient conditions. Angew. Chem., Int. Ed. 2014;53:2615–2619. doi: 10.1002/anie.201309778. PubMed DOI

Saptal V, Shinde DB, Banerjee R, Bhanage BM. State-of-the-art catechol porphyrin COF catalyst for chemical fixation of carbon dioxide via cyclic carbonates and oxazolidinones. Catal. Sci. Technol. 2016;6:6152–6158. doi: 10.1039/C6CY00362A. DOI

Liu X, et al. Cooperative calcium-based catalysis with 1,8-diazabicyclo[5.4. 0]-undec-7-ene for the cycloaddition of epoxides with CO2 at atmospheric pressure. Green Chem. 2016;18:2871–2876. doi: 10.1039/C5GC02761F. DOI

Ghosh A, et al. Cycloaddition of CO2 to epoxides using a highly active Co(III) complex of tetraamidomacrocyclic ligand. Catal. Lett. 2010;137:1–7. doi: 10.1007/s10562-010-0325-0. DOI

Li Y-N, He L-N, Lang X-D, Liu X-F, Zhang S. An integrated process of CO2 capture and in situ hydrogenation to formate using a tunable ethoxyl-functionalized amidine and Rh/bisphosphine system. RSC Adv. 2014;4:49995–50002. doi: 10.1039/C4RA08740B. DOI

Lian C, et al. Solvent-free selective hydrogenation of chloronitrobenzene to chloroaniline over a robust Pt/Fe3O4 catalyst. Chem. Commun. 2012;48:3124–3126. doi: 10.1039/c2cc16620h. PubMed DOI

Teng Q, Huynh HV. Controlled access to a heterometallic N-heterocyclic carbene helicate. Chem. Commun. 2015;51:1248–1251. doi: 10.1039/C4CC08270B. PubMed DOI

Gawande MB, Branco PS, Varma RS. Nano-magnetite (Fe3O4) as a support for recyclable catalysts in the development of sustainable methodologies. Chem. Soc. Rev. 2013;42:3371–3393. doi: 10.1039/c3cs35480f. PubMed DOI

Yan J-M, Zhang X-B, Akita T, Haruta M, Xu Q. One-step seeding growth of magnetically recyclable Au@Co core−shell nanoparticles: Highly efficient catalyst for hydrolytic dehydrogenation of ammonia borane. J. Am. Chem. Soc. 2010;132:5326–5327. doi: 10.1021/ja910513h. PubMed DOI

Yang B, et al. Preparation of a magnetically recoverable nanocatalyst via cobalt-doped Fe3O4 nanoparticles and its application in the hydrogenation of nitroarenes. Nano Res. 2016;9:1879–1890. doi: 10.1007/s12274-016-1080-3. DOI

Gao D, et al. Supported single Au(III) ion catalysts for high performance in the reactions of 1,3-dicarbonyls with alcohols. Nano Res. 2016;9:985–995. doi: 10.1007/s12274-016-0986-0. DOI

Decan MR, Impellizzeri S, Marin ML, Scaiano JC. Copper nanoparticle heterogeneous catalytic ‘click’ cycloaddition confirmed by single-molecule spectroscopy. Nat. Commun. 2014;5:4612. doi: 10.1038/ncomms5612. PubMed DOI

Shokouhimehr M, Piao Y, Kim J, Jang Y, Hyeon T. A magnetically recyclable nanocomposite catalyst for olefin epoxidation. Angew. Chem., Int. Ed. 2007;46:7039–7043. doi: 10.1002/anie.200702386. PubMed DOI

Yuan B, Pan Y, Li Y, Yin B, Jiang H. A highly active heterogeneous palladium catalyst for the Suzuki–Miyaura and Ullmann coupling reactions of aryl chlorides in aqueous media. Angew. Chem., Int. Edit. 2010;49:4054–4058. doi: 10.1002/anie.201000576. PubMed DOI

Pagoti S, Surana S, Chauhan A, Parasar B, Dash J. Reduction of organic azides to amines using reusable Fe3O4 nanoparticles in aqueous medium. Catal. Sci. Technol. 2013;3:584–588. doi: 10.1039/c2cy20776a. DOI

Santos BF, et al. C-S cross-coupling reaction using a recyclable palladium prolinate catalyst under mild and green conditions. Chemistry Select. 2017;2:9063–9068.

Shylesh S, Schünemann V, Thiel WR. Magnetically separable nanocatalysts: Bridges between homogeneous and heterogeneous catalysis. Angew. Chem., Int. Ed. 2010;49:3428–3459. doi: 10.1002/anie.200905684. PubMed DOI

Polshettiwar V, et al. Magnetically recoverable nanocatalysts. Chem. Rev. 2011;111:3036–3075. doi: 10.1021/cr100230z. PubMed DOI

Zhu M, Diao G. Review on the progress in synthesis and application of magnetic carbon nanocomposites. Nanoscale. 2011;3:2748–2767. doi: 10.1039/c1nr10165j. PubMed DOI

Sharma RK, et al. Fe3O4 (iron oxide)-supported nanocatalysts: synthesis, characterization and applications in coupling reactions. Green Chem. 2016;18:3184–3209. doi: 10.1039/C6GC00864J. DOI

Gawande MB, Monga Y, Zboril R, Sharma R. Silica-decorated magnetic nanocomposites for catalytic applications. Coord. Chem. Rev. 2015;288:118–143. doi: 10.1016/j.ccr.2015.01.001. DOI

Sharma R, Gulati S, Pandey A, Adholeya A. Novel, efficient and recyclable silica based organic–inorganic hybrid nickel catalyst for degradation of dye pollutants in a newly designed chemical reactor. Appl. Catal., B. 2012;125:247–258. doi: 10.1016/j.apcatb.2012.05.046. DOI

Sharma RK, Sharma S, Dutta S, Zboril R, Gawande MB. Silica-nanosphere-based organic-inorganic hybrid nanomaterials: synthesis, functionalization and applications in catalysis. Green Chem. 2015;17:3207–3230. doi: 10.1039/C5GC00381D. DOI

Sharma RK, et al. Maghemite‐copper nanocomposites: applications for ligand‐free cross‐coupling (C–O, C–S, and C–N) reactions. ChemCatChem. 2015;7:3495–3502. doi: 10.1002/cctc.201500546. DOI

Sharma RK, Yadav M, Gaur R, Monga Y, Adholeya A. Magnetically retrievable silica-based nickel nanocatalyst for Suzuki–Miyaura cross-coupling reaction. Catal. Sci. Technol. 2015;5:2728–2740. doi: 10.1039/C4CY01736F. DOI

Sharma RK, et al. Silica-based magnetic manganese nanocatalyst–applications in the oxidation of organic halides and alcohols. ACS Sustainable Chem. Eng. 2016;4:1123–1130. doi: 10.1021/acssuschemeng.5b01183. DOI

Sharma RK, et al. Synthesis of iron oxide palladium nanoparticles and their catalytic applications for direct coupling of acyl chlorides with alkynes. ChemPlusChem. 2016;81:1312–1319. doi: 10.1002/cplu.201600321. PubMed DOI

Gawande MB, et al. Cu and Cu-based nanoparticles: synthesis and applications in catalysis. Chem. Rev. 2016;116:3722–3811. doi: 10.1021/acs.chemrev.5b00482. PubMed DOI

Polshettiwar V, Varma RS. Nanoparticle-supported and magnetically recoverable palladium (Pd) catalyst: a selective and sustainable oxidation protocol with high turnover number. Org. Biomol. Chem. 2009;7:37–40. doi: 10.1039/B817669H. PubMed DOI

Zhang Z, et al. Magnetically separable polyoxometalate catalyst for the oxidation of dibenzothiophene with H2O2. J. Colloid Interface Sci. 2011;360:189–194. doi: 10.1016/j.jcis.2011.04.045. PubMed DOI

Abu-Reziq R, Alper H, Wang D, Post ML. Metal Supported on Dendronized Magnetic Nanoparticles:  Highly Selective Hydroformylation Catalysts. J. Am. Chem. Soc. 2006;128:5279–5282. doi: 10.1021/ja060140u. PubMed DOI

Ma D, et al. Superparamagnetic FexOy@SiO2 core−shell nanostructures:  Controlled synthesis and magnetic characterization. J. Phys. Chem. C. 2007;111:1999–2007. doi: 10.1021/jp0665067. DOI

Zhu J, et al. A facile and flexible process of β-cyclodextrin grafted on Fe3O4 magnetic nanoparticles and host–guest inclusion studies. Appl. Surf. Sci. 2011;257:9056–9062. doi: 10.1016/j.apsusc.2011.05.099. DOI

Kooti M, Afshari M. Phosphotungstic acid supported on magnetic nanoparticles as an efficient reusable catalyst for epoxidation of alkenes. Mater. Res. Bull. 2012;47:3473–3478. doi: 10.1016/j.materresbull.2012.07.001. DOI

Yamaura M, et al. Preparation and characterization of (3-aminopropyl)triethoxysilane-coated magnetite nanoparticles. J. Magn. Magn. Mater. 2004;279:210–217. doi: 10.1016/j.jmmm.2004.01.094. DOI

Baig RN, Varma RS. A facile one-pot synthesis of ruthenium hydroxide nanoparticles on magnetic silica: aqueous hydration of nitriles to amides. Chem. Commun. 2012;48:6220–6222. doi: 10.1039/c2cc32566g. PubMed DOI

Zhang P, et al. Mesoporous nitrogen-doped carbon for copper-mediated Ullmann-type C-O/-N/-S cross-coupling reactions. RSC Adv. 2013;3:1890–1895. doi: 10.1039/C2RA22559J. DOI

Bhanja P, Das SK, Patra AK, Bhaumik A. Functionalized graphene oxide as an efficient adsorbent for CO2 capture and support for heterogeneous catalysis. RSC Adv. 2016;6:72055–72068. doi: 10.1039/C6RA13590K. DOI

Digigow RG, et al. Preparation and characterization of functional silica hybrid magnetic nanoparticles. J. Magn. Magn. Mater. 2014;362:72–79. doi: 10.1016/j.jmmm.2014.03.026. DOI

Ren Y, Shim JJ. Efficient synthesis of cyclic carbonates by MgII/phosphine‐catalyzed coupling reactions of carbon dioxide and epoxides. ChemCatChem. 2013;5:1344–1349. doi: 10.1002/cctc.201200770. DOI

Das N, Gomes C, et al. A diagonal approach to chemical recycling of carbon dioxide: organocatalytic transformation for the reductive functionalization of CO2. Angew. Chem., Int. Ed. 2012;51:187–190. doi: 10.1002/anie.201105516. PubMed DOI

Kayaki Y, Yamamoto M, Ikariya T. Stereoselective formation of α-alkylidene cyclic carbonates via carboxylative cyclization of propargyl alcohols in supercritical carbon dioxide. J. Org. Chem. 2007;72:647–649. doi: 10.1021/jo062094m. PubMed DOI

Paddock RL, Nguyen ST. Chemical CO2 fixation: Cr(III) salen complexes as highly efficient catalysts for the coupling of CO2 and epoxides. J. Am. Chem. Soc. 2001;123:11498–11499. doi: 10.1021/ja0164677. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...