• This record comes from PubMed

Homogenization and impoverishment of taxonomic and functional diversity of ants in Eucalyptus plantations

. 2018 Feb 19 ; 8 (1) : 3266. [epub] 20180219

Language English Country England, Great Britain Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 29459699
PubMed Central PMC5818526
DOI 10.1038/s41598-018-20823-1
PII: 10.1038/s41598-018-20823-1
Knihovny.cz E-resources

Despite its negative impacts on the environment and biodiversity, tree plantations can contribute to biodiversity conservation in fragmented landscapes, as they harbor many native species. In this study, we investigated the impact of Eucalyptus plantations on the taxonomic and functional diversity of ant communities, comparing ant communities sampled in managed and unmanaged (abandoned for 28 years) Eucalyptus plantations, and native Atlantic rain forests. Eucalyptus plantations, both managed and unmanaged, reduced the functional diversity and increased the similarity between ant communities leading to functional homogenization. While communities in managed plantations had the lowest values of both taxonomic and functional ant diversities, ant communities from unmanaged plantations had similar values of species richness, functional redundancy and Rao's Q compared to ant communities from forest patches (although functional richness was lower). In addition, communities in unmanaged Eucalyptus plantations were taxonomically and functionally more similar to communities located in managed plantations, indicating that Eucalyptus plantations have a severe long-term impact on ant communities. These results indicate that natural regeneration may mitigate the impact of Eucalyptus management, particularly regarding the functional structure of the community (α diversity), although it does not attenuate the effects of long term homogenization in community composition (β diversity).

See more in PubMed

Foley JA, et al. Global consequences of land use. Science. 2005;309(5734):570–574. doi: 10.1126/science.1111772. PubMed DOI

Paquette A, Messier C. The role of plantations in managing the world’s forests in the Anthropocene. Frontiers in Ecology and the Environment. 2010;8(1):27–34. doi: 10.1890/080116. DOI

FAO. Global forest resources assessment 2015. http://www.fao.org/3/a-i4808e.pdf (2017).

Klomp, N. & Grabham, C. A comparison of the avifaunal diversity on native hardwood plantations and pastureland in north-east Victoria 1999–2000. Albury, N.S.W: Charles Sturt University, Johnstone Centre (2002).

Lindenmayer DB, Richard J. Hobbs. Fauna conservation in Australian plantation forests–a review. Biological Conservation. 2004;119(2):151–168. doi: 10.1016/j.biocon.2003.10.028. DOI

Lugo AE. The apparent paradox of reestablishing species richness on degraded lands with tree monocultures. Forest ecology and management. 1997;99(1–2):9–19. doi: 10.1016/S0378-1127(97)00191-6. DOI

Pozo, J., González, E., Díez, J. R., Molinero, J. & Elósegui, A. Inputs of particulate organic matter to streams with different riparian vegetation. Journal of the North American Benthological Society, 602–611 (1997).

Forrester DI, Bauhus J, Cowie AL, Vanclay JK. Mixed-species plantations of Eucalyptus with nitrogen-fixing trees: a review. Forest Ecology and Management. 2006;233(2):211–230. doi: 10.1016/j.foreco.2006.05.012. DOI

Barlow J, et al. Quantifying the biodiversity value of tropical primary, secondary, and plantation forests. Proceedings of the National Academy of Sciences. 2007;104(47):18555–18560. doi: 10.1073/pnas.0703333104. PubMed DOI PMC

Nair, K. S. S. Pest outbreaks in tropical forest plantations: is there a greater risk for exotic tree species? CIFOR, Bogor, Indonesia. (2001).

Suguituru SS, Silva RR, Souza DRD, Munhae CDB, Morini MSDC. Ant community richness and composition across a gradient from Eucalyptus plantations to secondary Atlantic Forest. Biota Neotropica. 2011;11(1):369–376. doi: 10.1590/S1676-06032011000100034. DOI

Díaz S, Cabido M. Vive la difference: plant functional diversity matters to ecosystem processes. Trends in Ecology & Evolution. 2001;16(11):646–655. doi: 10.1016/S0169-5347(01)02283-2. DOI

Lohbeck M, et al. Functional diversity changes during tropical forest succession. Perspectives in Plant Ecology, Evolution and Systematics. 2012;14(2):89–96. doi: 10.1016/j.ppees.2011.10.002. DOI

Dukes JS. Biodiversity and invasibility in grassland microcosms.Oecologia. 2001;126(4):563–568. PubMed

Garnier, E. et al. Plant functional markers capture ecosystem properties during secondary succession (2004).

Villéger S, Mason NW, Mouillot D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology. 2008;89(8):2290–2301. doi: 10.1890/07-1206.1. PubMed DOI

Pillar VD, et al. Functional redundancy and stability in plant communities. Journal of Vegetation Science. 2013;24(5):963–974. doi: 10.1111/jvs.12047. DOI

de Bello F, et al. Towards an assessment of multiple ecosystem processes and services via functional traits. Biodiversity and Conservation. 2010;19(10):2873–2893. doi: 10.1007/s10531-010-9850-9. DOI

Violle C, et al. The return of the variance: intraspecific variability in community ecology. Trends in ecology & evolution. 2012;27(4):244–252. doi: 10.1016/j.tree.2011.11.014. PubMed DOI

Carmona CP, de Bello F, Mason NW, Lepš J. Traits without borders: integrating functional diversity across scales. Trends in ecology & evolution. 2016;31(5):382–394. doi: 10.1016/j.tree.2016.02.003. PubMed DOI

de Bello F, Carmona CP, Mason NW, Sebastià MT, Lepš J. Which trait dissimilarity for functional diversity: trait means or trait overlap? Journal of Vegetation Science. 2013;24(5):807–819. doi: 10.1111/jvs.12008. DOI

Folgarait PJ. Ant biodiversity and its relationship to ecosystem functioning: a review. Biodiversity & Conservation. 1998;7(9):1221–1244. doi: 10.1023/A:1008891901953. DOI

Del Toro I, Ribbons RR, Pelini SL. The little things that run the world revisited: a review of ant-mediated ecosystem services and disservices (Hymenoptera: Formicidae) Myrmecological News. 2012;17:133–146.

Majer JD, Orabi G, Bisevac L. Ants (Hymenoptera: Formicidae) pass the bioindicator scorecard. Myrmecological News. 2007;10:69–76.

Pik AJ, Oliver AN, Beattie AJ. Taxonomic sufficiency in ecological studies of terrestrial invertebrates. Austral Ecology. 1999;24.5:555–562. doi: 10.1046/j.1442-9993.1999.01003.x. DOI

Ratsirarson H, Robertson HG, Picker MD, Van Noort S. Indigenous forests versus exotic eucalypt and pine plantations: a comparison of leaf-litter invertebrate communities. African Entomology. 2002;10(1):93–99.

Schnell MR, Pik AJ, Dangerfield JM. Ant community succession within eucalypt plantations on used pasture and implications for taxonomic sufficiency in biomonitoring. Austral Ecology. 2003;28(5):553–565. doi: 10.1046/j.1442-9993.2003.01312.x. DOI

Mentone, T. D. O., Diniz, E. A., Munhae, C. D. B., Bueno, O. C. & Morini, M. S. D. C.. Composição da fauna de formigas (Hymenoptera: Formicidae) de serapilheira em florestas semidecídua e de Eucalyptus spp., na região sudeste do Brasil. Biota Neotropica, p. 237–246 (2011).

Pryde EC, Holland GJ, Watson SJ, Turton SM, Nimmo DG. Conservation of tropical forest tree species in a native timber plantation landscape. Forest Ecology and Management. 2015;339:96–104. doi: 10.1016/j.foreco.2014.11.028. DOI

Jacoboski LI, Mendonça-Lima AD, Hartz SM. Structure of bird communities in eucalyptus plantations: nestedness as a pattern of species distribution. Brazilian Journal of Biology. 2016;3(76):583–591. doi: 10.1590/1519-6984.18614. PubMed DOI

Silvestre, R., Brandão, C. R. F. & Da Silva, R. R. Grupos funcionales de hormigas: el caso de los gremios del Cerrado. Introducción a las hormigas de la región neotropical, 113–148 (2003).

Blüthgen, N. & Feldhaar, H. Food and shelter: how resources influence ant ecology. Ant ecology, 115–136 (2010).

Goudin AK, Almeida MAX, Souto JS, Souto PC. Composição e sazonalidade da mesofauna do solo do semiárido paraibano. Revista Verde de Agroecologia e Desenvolvimento Sustentável. 2010;8(4):214–222.

Winck BR, de Sá ELS, Rigotti VM, Chauvat M. Relationship between land-use types and functional diversity of epigeic Collembola in Southern Brazil. Applied Soil Ecology. 2017;109:49–59. doi: 10.1016/j.apsoil.2016.09.021. DOI

Larrañaga A, Basaguren A, Elosegi A, Pozo J. Impacts of Eucalyptus globulus plantations on Atlantic streams: changes in invertebrate density and shredder traits. Fundamental and Applied Limnology/Archiv für Hydrobiologie. 2009;175(2):151–160. doi: 10.1127/1863-9135/2009/0175-0151. DOI

Andersen, A. N. Using ants as bioindicators: multiscale issues in ant community ecology. Conservation Ecology1(1) (1997).

Ribas, C. R., Campos, R. B., Schmidt, F. A. & Solar, R. R. Ants as indicators in Brazil: a review with suggestions to improve the use of ants in environmental monitoring programs. Psyche: A Journal of Entomology (2011).

Hansen RA. Effects of habitat complexity and composition on a diverse litter microarthropod assemblage. Ecology. 2000;81(4):1120–1132. doi: 10.1890/0012-9658(2000)081[1120:EOHCAC]2.0.CO;2. DOI

Sarty HU, et al. Atividade moluscicida e cercaricida de diferentes espécies de Eucalyptus. Revista da Sociedade Brasileira de Medicina Tropical. 2006;23(4):197–199. PubMed

de Bello F, et al. Incorporating plant functional diversity effects in ecosystem service assessments. Proceedings of the National Academy of Sciences. 2007;104(52):20684–20689. doi: 10.1073/pnas.0704716104. PubMed DOI PMC

Sasaki T, et al. Vulnerability of moorland plant communities to environmental change: consequences of realistic species loss on functional diversity. Journal of applied ecology. 2014;51(2):299–308. doi: 10.1111/1365-2664.12192. DOI

Mouillot D, et al. Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs. Proceedings of the National Academy of Sciences. 2014;111(38):13757–13762. doi: 10.1073/pnas.1317625111. PubMed DOI PMC

Carmona, C. P., Guerrero, I., Morales, M. B., Oñate, J. J. & Peco, B. Assessing vulnerability of functional diversity to species loss: a case study in Mediterranean agricultural systems. Functional Ecology, 10.1111/1365-2435.12709 (2016).

Pacheco R, Vasconcelos HL. Invertebrate conservation in urban areas: ants in the Brazilian Cerrado. Landscape and Urban Planning. 2007;81(3):193–199. doi: 10.1016/j.landurbplan.2006.11.004. DOI

Pacheco R, Vasconcelos HL, Groc S, Camacho GP, Frizzo TL. The importance of remnants of natural vegetation for maintaining ant diversity in Brazilian agricultural landscapes. Biodiversity and conservation. 2013;22(4):983–997. doi: 10.1007/s10531-013-0463-y. DOI

Delabie, J. H. C., Agosti, D. & Nascimento, I. C. Litter ant communities of the Brazilian Atlantic rain forest region. In Sampling Ground-dwelling Ants: case studies from the world’s rain forests. Curtin University of Technology School of Environmental Biology Bulletin 18 (2000).

Human KG, Gordon DM. Exploitation and interference competition between the invasive Argentine ant, Linepithema humile, and native ant species. Oecologia. 1996;105(3):405–412. doi: 10.1007/BF00328744. PubMed DOI

Cuautle M, Vergara CH, Badano EI. Comparison of Ant Community Diversity and Functional Group Composition Associated to Land Use Change in a Seasonally Dry Oak Forest. Neotropical entomology. 2016;45(2):170–179. doi: 10.1007/s13744-015-0353-y. PubMed DOI

Bihn JH, Verhaagh M, Brändle M, Brandl R. Do secondary forests act as refuges for old growth forest animals? Recovery of ant diversity in the Atlantic forest of Brazil. Biological conservation. 2008;141.3:733–743. doi: 10.1016/j.biocon.2007.12.028. DOI

Aide TM, Zimmerman JK, Pascarella JB, Rivera L, Marcano‐Vega H. Forest regeneration in a chronosequence of tropical abandoned pastures: implications for restoration ecology. Restoration Ecology. 2000;8(4):328–338. doi: 10.1046/j.1526-100x.2000.80048.x. DOI

Dunn JL, Turnbull JD, Robinson SA. Comparison of solvent regimes for the extraction of photosynthetic pigments from leaves of higher plants. Functional Plant Biology. 2004;31(2):195–202. doi: 10.1071/FP03162. PubMed DOI

Zhang D, Zhang J, Yang BW, Wu F. Effects of afforestation with Eucalyptus grandis on soil physicochemical and microbiological properties. Soil Res. 2010;50:167–176.

Mouillot D, Graham NA, Villéger S, Mason NW, Bellwood DR. A functional approach reveals community responses to disturbances. Trends in Ecology & Evolution. 2013;28(3):167–177. doi: 10.1016/j.tree.2012.10.004. PubMed DOI

Audino L, Louzada J, Comita L. Dung beetles as indicators of tropical forest restoration success: Is it possible to recover species and functional diversity? Biological Conservation. 2014;169:248–257. doi: 10.1016/j.biocon.2013.11.023. DOI

McGill BJ, Dornelas M, Gotelli NJ, Magurran AE. Fifteen forms of biodiversity trend in the Anthropocene. Trends in ecology & evolution. 2015;30(2):104–113. doi: 10.1016/j.tree.2014.11.006. PubMed DOI

Martello F, Andriolli F, de Souza TB, Dodonov P, Ribeiro MC. Edge and land use effects on dung beetles (Coleoptera: Scarabaeidae: Scarabaeinae) in Brazilian cerrado vegetation. Journal of Insect Conservation. 2016;20(6):957–970. doi: 10.1007/s10841-016-9928-0. DOI

Gardner TA, et al. The value of primary, secondary, and plantation forests for a Neotropical herpetofauna. Conservation biology. 2007;21(3):775–787. doi: 10.1111/j.1523-1739.2007.00659.x. PubMed DOI

Lo-Man-Hung NF, Gardner TA, Ribeiro-Júnior MA, Barlow J, Bonaldo AB. The value of primary, secondary, and plantation forests for Neotropical epigeic arachnids. Journal of Arachnology. 2008;36(2):394–401. doi: 10.1636/CT07-136.1. DOI

Bihn JH, Gebauer G, Brandl R. Loss of functional diversity of ant assemblages in secondary tropical forests. Ecology. 2010;91(3):782–792. doi: 10.1890/08-1276.1. PubMed DOI

Lapola DM, Fowler HG. Questioning the implementation of habitat corridors: a case study in interior São Paulo using ants as bioindicators. Brazilian Journal of Biology. 2008;68(1):11–20. doi: 10.1590/S1519-69842008000100003. PubMed DOI

Benayas JMR, Bullock JM, Newton AC. Creating woodland islets to reconcile ecological restoration, conservation, and agricultural land use. Frontiers in Ecology and the Environment. 2008;6(6):329–336. doi: 10.1890/070057. DOI

Campoe OC, Stape JL, Mendes JCT. Can intensive management accelerate the restoration of Brazil’s Atlantic forests? Forest Ecology and Management. 2010;259(9):1808–1814. doi: 10.1016/j.foreco.2009.06.026. DOI

Geldenhuys CJ. Native forest regeneration in pine and eucalypt plantations in Northern Province, South Africa. Forest Ecology and Management. 1997;99(1):101–115. doi: 10.1016/S0378-1127(97)00197-7. DOI

Neri AV, et al. Regeneração de espécies nativas lenhosas sob plantio de Eucalyptus em área de Cerrado na Floresta Nacional de Paraopeba, MG, Brasil. Acta Botanica Brasilica. 2005;19(2):369–376. doi: 10.1590/S0102-33062005000200020. DOI

Corbin JD, Holl KD. Applied nucleation as a forest restoration strategy. Forest Ecology and Management. 2012;265:37–46. doi: 10.1016/j.foreco.2011.10.013. DOI

Colombo AF, Joly CA. Brazilian Atlantic Forest lato sensu: the most ancient Brazilian forest, and a biodiversity hotspot, is highly threatened by climate change. Brazilian Journal of Biology. 2010;70(3):697–708. doi: 10.1590/S1519-69842010000400002. PubMed DOI

Bestelmeyer BT. The trade‐off between thermal tolerance and behavioral dominance in a subtropical South American ant community. Journal of Animal Ecology. 2000;69(6):998–1009. doi: 10.1046/j.1365-2656.2000.00455.x. DOI

Silva RR, Brandão CRF. Morphological patterns and community organization in leaf-litter ant assemblages. Ecological Monographs. 2010;80(1):107–124. doi: 10.1890/08-1298.1. DOI

Gibb H, Parr CL. Does structural complexity determine the morphology of assemblages? An experimental test on three continents. PLoS One. 2013;8(5):e64005. doi: 10.1371/journal.pone.0064005. PubMed DOI PMC

Yates ML, Andrew NR, Binns M, Gibb H. Morphological traits: predictable responses to macrohabitats across a 300 km scale. PeerJ. 2014;2:e271. doi: 10.7717/peerj.271. PubMed DOI PMC

Gibb H, et al. Does morphology predict trophic position and habitat use of ant species and assemblages? Oecologia. 2015;177(2):519–531. doi: 10.1007/s00442-014-3101-9. PubMed DOI

Parr CL, et al. GlobalAnts: a new database on the geography of ant traits (Hymenoptera: Formicidae) Insect Conservation and Diversity. 2017;10(1):5–20. doi: 10.1111/icad.12211. DOI

Pakeman RJ, Quested HM. Sampling plant functional traits: what proportion of the species need to be measured? Applied Vegetation Science. 2017;10(1):91–96. doi: 10.1111/j.1654-109X.2007.tb00507.x. DOI

Pakeman RJ. Functional trait metrics are sensitive to the completeness of the species’ trait data? Methods in Ecology and Evolution. 2014;5(1):9–15. doi: 10.1111/2041-210X.12136. DOI

Májeková M, et al. Evaluating functional diversity: missing trait data and the importance of species abundance structure and data transformation. PloS one. 2016;11(2):e0149270. doi: 10.1371/journal.pone.0149270. PubMed DOI PMC

Silva RR, Brandão CRF. Ecosystem-wide morphological structure of leaf-litter ant communities along a tropical latitudinal gradient. PloS one. 2014;9(3):e93049. doi: 10.1371/journal.pone.0093049. PubMed DOI PMC

Baselga A. (2010). Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography. 2014;19(1):134–143. doi: 10.1111/j.1466-8238.2009.00490.x. DOI

Baselga A, Orme CDL. Betapart: an R package for the study of beta diversity. Methods in Ecology and Evolution. 2012;3(5):808–812. doi: 10.1111/j.2041-210X.2012.00224.x. DOI

R Core Team R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, http://www.R-project.org/ (2017).

Garnier E, et al. Plant functional markers capture ecosystem properties during secondary succession. Ecology. 2004;85(9):2630–2637. doi: 10.1890/03-0799. DOI

Diaz S, et al. The plant traits that drive ecosystems: evidence from three continents. Journal of Vegetation Science. 2004;15(3):295–304. doi: 10.1111/j.1654-1103.2004.tb02266.x. DOI

Carmona CP, de Bello F, Mason NW, Lepš J. The density awakens: a reply to Blonder. Trends in ecology & evolution. 2016;31(9):667–669. doi: 10.1016/j.tree.2016.07.003. PubMed DOI

Moretti M, De Bello F, Roberts SP, Potts SG. Taxonomical vs. functional responses of bee communities to fire in two contrasting climatic regions. Journal of Animal Ecology. 2009;78(1):98–108. doi: 10.1111/j.1365-2656.2008.01462.x. PubMed DOI

Botta‐Dukát Z. Rao’s quadratic entropy as a measure of functional diversity based on multiple traits. Journal of Vegetation Science. 2005;16(5):533–540. doi: 10.1111/j.1654-1103.2005.tb02393.x. DOI

Longino, J. T. What to do with the data. in Ants: standard methods for measuring and monitoring biodiversity (ed. Agosti, D., Majer, J., Alonso, E. & Schultz, T. R.) 186–203, (Washigton, 2000).

Leponce M, Theunis L, Delabie J, Roisin Y. Scale dependence of diversity measures in a leaf-litter ant assemblage. Ecography. 2004;27:253–267. doi: 10.1111/j.0906-7590.2004.03715.x. DOI

Mouillot D, Graham NAS, Mason NW, Bellwood DR. A functional approach reveals community responses to disturbances. Trends in Ecology & Evolution. 2013;28(3):167–177. doi: 10.1016/j.tree.2012.10.004. PubMed DOI

Laliberté E, Legendre P, Shipley B. FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version. 2014;1:0–12. PubMed

Blonder B, Lamanna C, Violle C, Enquist BJ. The n‐dimensional hypervolume. Global Ecology and Biogeography. 2014;23(5):595–609. doi: 10.1111/geb.12146. DOI

Siegel, S. & Castellan, N. J. Nonparametric statistics for the behavioral sciences. McGraw-HiU Book Company, New York (1988).

Anderson, M. J. Permutational multivariate analysis of variance. Department of Statistics, University of Auckland, Auckland (2001).

Oksanen J, et al. The vegan package. Community ecology package. 2007;10:631–637.

Wickham, H. Ggplot2: elegant graphics for data analysis. Springer (2016).

Kaspari M. Body size and microclimate use in Neotropical granivorous ants. Oecologia. 1993;96(4):500–507. doi: 10.1007/BF00320507. PubMed DOI

Weiser MD, Kaspari M. Ecological morphospace of New World ants. Ecological Entomology. 2006;31(2):131–142. doi: 10.1111/j.0307-6946.2006.00759.x. DOI

Fowler, H. G., Forti, L. C., Brandão, C. R. F., Delabie, J. H. C. & Vasconcelos, H. L. Ecologia nutricional de formigas. Ecologia nutricional de insetos e suas implicações no manejo de pragas, 131–223 (1991).

Gronenberg W. The trap-jaw mechanism in the dacetine ants Daceton armigerum and Strumigenys sp. Journal of Experimental Biology. 1996;199(9):2021–2033. PubMed

Bauer T, Desender K, Morwinsky T, Betz O. Eye morphology reflects habitat demands in three closely related ground beetle species (Coleoptera: Carabidae) Journal of Zoology. 1998;245(4):467–472. doi: 10.1111/j.1469-7998.1998.tb00121.x. DOI

Traniello JFA. Comparative foraging ecology of north temperate ants: the role of worker size and cooperative foraging in prey selection. Insectes Sociaux. 1987;34(2):118–130. doi: 10.1007/BF02223830. DOI

Kaspari M. Worker size and seed size selection by harvester ants in a Neotropical forest. Oecologia. 1996;105(3):397–404. doi: 10.1007/BF00328743. PubMed DOI

Kaspari M, Weiser MD. The size–grain hypothesis and interspecific scaling in ants. Functional Ecology. 1999;13(4):530–538. doi: 10.1046/j.1365-2435.1999.00343.x. DOI

Feener, D. H. Jr., Lighton, J. R. B. & Bartholomew, G. A. Curvilinear allometry, energetics and foraging ecology: a comparison of leaf-cutting ants and army ants. Functional Ecology, 509–520 (1988).

Wiescher PT, Pearce-Duvet JM, Feener DH. Assembling an ant community: species functional traits reflect environmental filtering. Oecologia. 2012;169(4):1063–1074. doi: 10.1007/s00442-012-2262-7. PubMed DOI

Newest 20 citations...

See more in
Medvik | PubMed

Erosion of global functional diversity across the tree of life

. 2021 Mar ; 7 (13) : . [epub] 20210326

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...