Homogenization and impoverishment of taxonomic and functional diversity of ants in Eucalyptus plantations
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
29459699
PubMed Central
PMC5818526
DOI
10.1038/s41598-018-20823-1
PII: 10.1038/s41598-018-20823-1
Knihovny.cz E-resources
- MeSH
- Biodiversity * MeSH
- Biological Variation, Population * MeSH
- Rainforest MeSH
- Eucalyptus parasitology MeSH
- Ants classification physiology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Despite its negative impacts on the environment and biodiversity, tree plantations can contribute to biodiversity conservation in fragmented landscapes, as they harbor many native species. In this study, we investigated the impact of Eucalyptus plantations on the taxonomic and functional diversity of ant communities, comparing ant communities sampled in managed and unmanaged (abandoned for 28 years) Eucalyptus plantations, and native Atlantic rain forests. Eucalyptus plantations, both managed and unmanaged, reduced the functional diversity and increased the similarity between ant communities leading to functional homogenization. While communities in managed plantations had the lowest values of both taxonomic and functional ant diversities, ant communities from unmanaged plantations had similar values of species richness, functional redundancy and Rao's Q compared to ant communities from forest patches (although functional richness was lower). In addition, communities in unmanaged Eucalyptus plantations were taxonomically and functionally more similar to communities located in managed plantations, indicating that Eucalyptus plantations have a severe long-term impact on ant communities. These results indicate that natural regeneration may mitigate the impact of Eucalyptus management, particularly regarding the functional structure of the community (α diversity), although it does not attenuate the effects of long term homogenization in community composition (β diversity).
See more in PubMed
Foley JA, et al. Global consequences of land use. Science. 2005;309(5734):570–574. doi: 10.1126/science.1111772. PubMed DOI
Paquette A, Messier C. The role of plantations in managing the world’s forests in the Anthropocene. Frontiers in Ecology and the Environment. 2010;8(1):27–34. doi: 10.1890/080116. DOI
FAO. Global forest resources assessment 2015. http://www.fao.org/3/a-i4808e.pdf (2017).
Klomp, N. & Grabham, C. A comparison of the avifaunal diversity on native hardwood plantations and pastureland in north-east Victoria 1999–2000. Albury, N.S.W: Charles Sturt University, Johnstone Centre (2002).
Lindenmayer DB, Richard J. Hobbs. Fauna conservation in Australian plantation forests–a review. Biological Conservation. 2004;119(2):151–168. doi: 10.1016/j.biocon.2003.10.028. DOI
Lugo AE. The apparent paradox of reestablishing species richness on degraded lands with tree monocultures. Forest ecology and management. 1997;99(1–2):9–19. doi: 10.1016/S0378-1127(97)00191-6. DOI
Pozo, J., González, E., Díez, J. R., Molinero, J. & Elósegui, A. Inputs of particulate organic matter to streams with different riparian vegetation. Journal of the North American Benthological Society, 602–611 (1997).
Forrester DI, Bauhus J, Cowie AL, Vanclay JK. Mixed-species plantations of Eucalyptus with nitrogen-fixing trees: a review. Forest Ecology and Management. 2006;233(2):211–230. doi: 10.1016/j.foreco.2006.05.012. DOI
Barlow J, et al. Quantifying the biodiversity value of tropical primary, secondary, and plantation forests. Proceedings of the National Academy of Sciences. 2007;104(47):18555–18560. doi: 10.1073/pnas.0703333104. PubMed DOI PMC
Nair, K. S. S. Pest outbreaks in tropical forest plantations: is there a greater risk for exotic tree species? CIFOR, Bogor, Indonesia. (2001).
Suguituru SS, Silva RR, Souza DRD, Munhae CDB, Morini MSDC. Ant community richness and composition across a gradient from Eucalyptus plantations to secondary Atlantic Forest. Biota Neotropica. 2011;11(1):369–376. doi: 10.1590/S1676-06032011000100034. DOI
Díaz S, Cabido M. Vive la difference: plant functional diversity matters to ecosystem processes. Trends in Ecology & Evolution. 2001;16(11):646–655. doi: 10.1016/S0169-5347(01)02283-2. DOI
Lohbeck M, et al. Functional diversity changes during tropical forest succession. Perspectives in Plant Ecology, Evolution and Systematics. 2012;14(2):89–96. doi: 10.1016/j.ppees.2011.10.002. DOI
Dukes JS. Biodiversity and invasibility in grassland microcosms.Oecologia. 2001;126(4):563–568. PubMed
Garnier, E. et al. Plant functional markers capture ecosystem properties during secondary succession (2004).
Villéger S, Mason NW, Mouillot D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology. 2008;89(8):2290–2301. doi: 10.1890/07-1206.1. PubMed DOI
Pillar VD, et al. Functional redundancy and stability in plant communities. Journal of Vegetation Science. 2013;24(5):963–974. doi: 10.1111/jvs.12047. DOI
de Bello F, et al. Towards an assessment of multiple ecosystem processes and services via functional traits. Biodiversity and Conservation. 2010;19(10):2873–2893. doi: 10.1007/s10531-010-9850-9. DOI
Violle C, et al. The return of the variance: intraspecific variability in community ecology. Trends in ecology & evolution. 2012;27(4):244–252. doi: 10.1016/j.tree.2011.11.014. PubMed DOI
Carmona CP, de Bello F, Mason NW, Lepš J. Traits without borders: integrating functional diversity across scales. Trends in ecology & evolution. 2016;31(5):382–394. doi: 10.1016/j.tree.2016.02.003. PubMed DOI
de Bello F, Carmona CP, Mason NW, Sebastià MT, Lepš J. Which trait dissimilarity for functional diversity: trait means or trait overlap? Journal of Vegetation Science. 2013;24(5):807–819. doi: 10.1111/jvs.12008. DOI
Folgarait PJ. Ant biodiversity and its relationship to ecosystem functioning: a review. Biodiversity & Conservation. 1998;7(9):1221–1244. doi: 10.1023/A:1008891901953. DOI
Del Toro I, Ribbons RR, Pelini SL. The little things that run the world revisited: a review of ant-mediated ecosystem services and disservices (Hymenoptera: Formicidae) Myrmecological News. 2012;17:133–146.
Majer JD, Orabi G, Bisevac L. Ants (Hymenoptera: Formicidae) pass the bioindicator scorecard. Myrmecological News. 2007;10:69–76.
Pik AJ, Oliver AN, Beattie AJ. Taxonomic sufficiency in ecological studies of terrestrial invertebrates. Austral Ecology. 1999;24.5:555–562. doi: 10.1046/j.1442-9993.1999.01003.x. DOI
Ratsirarson H, Robertson HG, Picker MD, Van Noort S. Indigenous forests versus exotic eucalypt and pine plantations: a comparison of leaf-litter invertebrate communities. African Entomology. 2002;10(1):93–99.
Schnell MR, Pik AJ, Dangerfield JM. Ant community succession within eucalypt plantations on used pasture and implications for taxonomic sufficiency in biomonitoring. Austral Ecology. 2003;28(5):553–565. doi: 10.1046/j.1442-9993.2003.01312.x. DOI
Mentone, T. D. O., Diniz, E. A., Munhae, C. D. B., Bueno, O. C. & Morini, M. S. D. C.. Composição da fauna de formigas (Hymenoptera: Formicidae) de serapilheira em florestas semidecídua e de Eucalyptus spp., na região sudeste do Brasil. Biota Neotropica, p. 237–246 (2011).
Pryde EC, Holland GJ, Watson SJ, Turton SM, Nimmo DG. Conservation of tropical forest tree species in a native timber plantation landscape. Forest Ecology and Management. 2015;339:96–104. doi: 10.1016/j.foreco.2014.11.028. DOI
Jacoboski LI, Mendonça-Lima AD, Hartz SM. Structure of bird communities in eucalyptus plantations: nestedness as a pattern of species distribution. Brazilian Journal of Biology. 2016;3(76):583–591. doi: 10.1590/1519-6984.18614. PubMed DOI
Silvestre, R., Brandão, C. R. F. & Da Silva, R. R. Grupos funcionales de hormigas: el caso de los gremios del Cerrado. Introducción a las hormigas de la región neotropical, 113–148 (2003).
Blüthgen, N. & Feldhaar, H. Food and shelter: how resources influence ant ecology. Ant ecology, 115–136 (2010).
Goudin AK, Almeida MAX, Souto JS, Souto PC. Composição e sazonalidade da mesofauna do solo do semiárido paraibano. Revista Verde de Agroecologia e Desenvolvimento Sustentável. 2010;8(4):214–222.
Winck BR, de Sá ELS, Rigotti VM, Chauvat M. Relationship between land-use types and functional diversity of epigeic Collembola in Southern Brazil. Applied Soil Ecology. 2017;109:49–59. doi: 10.1016/j.apsoil.2016.09.021. DOI
Larrañaga A, Basaguren A, Elosegi A, Pozo J. Impacts of Eucalyptus globulus plantations on Atlantic streams: changes in invertebrate density and shredder traits. Fundamental and Applied Limnology/Archiv für Hydrobiologie. 2009;175(2):151–160. doi: 10.1127/1863-9135/2009/0175-0151. DOI
Andersen, A. N. Using ants as bioindicators: multiscale issues in ant community ecology. Conservation Ecology1(1) (1997).
Ribas, C. R., Campos, R. B., Schmidt, F. A. & Solar, R. R. Ants as indicators in Brazil: a review with suggestions to improve the use of ants in environmental monitoring programs. Psyche: A Journal of Entomology (2011).
Hansen RA. Effects of habitat complexity and composition on a diverse litter microarthropod assemblage. Ecology. 2000;81(4):1120–1132. doi: 10.1890/0012-9658(2000)081[1120:EOHCAC]2.0.CO;2. DOI
Sarty HU, et al. Atividade moluscicida e cercaricida de diferentes espécies de Eucalyptus. Revista da Sociedade Brasileira de Medicina Tropical. 2006;23(4):197–199. PubMed
de Bello F, et al. Incorporating plant functional diversity effects in ecosystem service assessments. Proceedings of the National Academy of Sciences. 2007;104(52):20684–20689. doi: 10.1073/pnas.0704716104. PubMed DOI PMC
Sasaki T, et al. Vulnerability of moorland plant communities to environmental change: consequences of realistic species loss on functional diversity. Journal of applied ecology. 2014;51(2):299–308. doi: 10.1111/1365-2664.12192. DOI
Mouillot D, et al. Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs. Proceedings of the National Academy of Sciences. 2014;111(38):13757–13762. doi: 10.1073/pnas.1317625111. PubMed DOI PMC
Carmona, C. P., Guerrero, I., Morales, M. B., Oñate, J. J. & Peco, B. Assessing vulnerability of functional diversity to species loss: a case study in Mediterranean agricultural systems. Functional Ecology, 10.1111/1365-2435.12709 (2016).
Pacheco R, Vasconcelos HL. Invertebrate conservation in urban areas: ants in the Brazilian Cerrado. Landscape and Urban Planning. 2007;81(3):193–199. doi: 10.1016/j.landurbplan.2006.11.004. DOI
Pacheco R, Vasconcelos HL, Groc S, Camacho GP, Frizzo TL. The importance of remnants of natural vegetation for maintaining ant diversity in Brazilian agricultural landscapes. Biodiversity and conservation. 2013;22(4):983–997. doi: 10.1007/s10531-013-0463-y. DOI
Delabie, J. H. C., Agosti, D. & Nascimento, I. C. Litter ant communities of the Brazilian Atlantic rain forest region. In Sampling Ground-dwelling Ants: case studies from the world’s rain forests. Curtin University of Technology School of Environmental Biology Bulletin 18 (2000).
Human KG, Gordon DM. Exploitation and interference competition between the invasive Argentine ant, Linepithema humile, and native ant species. Oecologia. 1996;105(3):405–412. doi: 10.1007/BF00328744. PubMed DOI
Cuautle M, Vergara CH, Badano EI. Comparison of Ant Community Diversity and Functional Group Composition Associated to Land Use Change in a Seasonally Dry Oak Forest. Neotropical entomology. 2016;45(2):170–179. doi: 10.1007/s13744-015-0353-y. PubMed DOI
Bihn JH, Verhaagh M, Brändle M, Brandl R. Do secondary forests act as refuges for old growth forest animals? Recovery of ant diversity in the Atlantic forest of Brazil. Biological conservation. 2008;141.3:733–743. doi: 10.1016/j.biocon.2007.12.028. DOI
Aide TM, Zimmerman JK, Pascarella JB, Rivera L, Marcano‐Vega H. Forest regeneration in a chronosequence of tropical abandoned pastures: implications for restoration ecology. Restoration Ecology. 2000;8(4):328–338. doi: 10.1046/j.1526-100x.2000.80048.x. DOI
Dunn JL, Turnbull JD, Robinson SA. Comparison of solvent regimes for the extraction of photosynthetic pigments from leaves of higher plants. Functional Plant Biology. 2004;31(2):195–202. doi: 10.1071/FP03162. PubMed DOI
Zhang D, Zhang J, Yang BW, Wu F. Effects of afforestation with Eucalyptus grandis on soil physicochemical and microbiological properties. Soil Res. 2010;50:167–176.
Mouillot D, Graham NA, Villéger S, Mason NW, Bellwood DR. A functional approach reveals community responses to disturbances. Trends in Ecology & Evolution. 2013;28(3):167–177. doi: 10.1016/j.tree.2012.10.004. PubMed DOI
Audino L, Louzada J, Comita L. Dung beetles as indicators of tropical forest restoration success: Is it possible to recover species and functional diversity? Biological Conservation. 2014;169:248–257. doi: 10.1016/j.biocon.2013.11.023. DOI
McGill BJ, Dornelas M, Gotelli NJ, Magurran AE. Fifteen forms of biodiversity trend in the Anthropocene. Trends in ecology & evolution. 2015;30(2):104–113. doi: 10.1016/j.tree.2014.11.006. PubMed DOI
Martello F, Andriolli F, de Souza TB, Dodonov P, Ribeiro MC. Edge and land use effects on dung beetles (Coleoptera: Scarabaeidae: Scarabaeinae) in Brazilian cerrado vegetation. Journal of Insect Conservation. 2016;20(6):957–970. doi: 10.1007/s10841-016-9928-0. DOI
Gardner TA, et al. The value of primary, secondary, and plantation forests for a Neotropical herpetofauna. Conservation biology. 2007;21(3):775–787. doi: 10.1111/j.1523-1739.2007.00659.x. PubMed DOI
Lo-Man-Hung NF, Gardner TA, Ribeiro-Júnior MA, Barlow J, Bonaldo AB. The value of primary, secondary, and plantation forests for Neotropical epigeic arachnids. Journal of Arachnology. 2008;36(2):394–401. doi: 10.1636/CT07-136.1. DOI
Bihn JH, Gebauer G, Brandl R. Loss of functional diversity of ant assemblages in secondary tropical forests. Ecology. 2010;91(3):782–792. doi: 10.1890/08-1276.1. PubMed DOI
Lapola DM, Fowler HG. Questioning the implementation of habitat corridors: a case study in interior São Paulo using ants as bioindicators. Brazilian Journal of Biology. 2008;68(1):11–20. doi: 10.1590/S1519-69842008000100003. PubMed DOI
Benayas JMR, Bullock JM, Newton AC. Creating woodland islets to reconcile ecological restoration, conservation, and agricultural land use. Frontiers in Ecology and the Environment. 2008;6(6):329–336. doi: 10.1890/070057. DOI
Campoe OC, Stape JL, Mendes JCT. Can intensive management accelerate the restoration of Brazil’s Atlantic forests? Forest Ecology and Management. 2010;259(9):1808–1814. doi: 10.1016/j.foreco.2009.06.026. DOI
Geldenhuys CJ. Native forest regeneration in pine and eucalypt plantations in Northern Province, South Africa. Forest Ecology and Management. 1997;99(1):101–115. doi: 10.1016/S0378-1127(97)00197-7. DOI
Neri AV, et al. Regeneração de espécies nativas lenhosas sob plantio de Eucalyptus em área de Cerrado na Floresta Nacional de Paraopeba, MG, Brasil. Acta Botanica Brasilica. 2005;19(2):369–376. doi: 10.1590/S0102-33062005000200020. DOI
Corbin JD, Holl KD. Applied nucleation as a forest restoration strategy. Forest Ecology and Management. 2012;265:37–46. doi: 10.1016/j.foreco.2011.10.013. DOI
Colombo AF, Joly CA. Brazilian Atlantic Forest lato sensu: the most ancient Brazilian forest, and a biodiversity hotspot, is highly threatened by climate change. Brazilian Journal of Biology. 2010;70(3):697–708. doi: 10.1590/S1519-69842010000400002. PubMed DOI
Bestelmeyer BT. The trade‐off between thermal tolerance and behavioral dominance in a subtropical South American ant community. Journal of Animal Ecology. 2000;69(6):998–1009. doi: 10.1046/j.1365-2656.2000.00455.x. DOI
Silva RR, Brandão CRF. Morphological patterns and community organization in leaf-litter ant assemblages. Ecological Monographs. 2010;80(1):107–124. doi: 10.1890/08-1298.1. DOI
Gibb H, Parr CL. Does structural complexity determine the morphology of assemblages? An experimental test on three continents. PLoS One. 2013;8(5):e64005. doi: 10.1371/journal.pone.0064005. PubMed DOI PMC
Yates ML, Andrew NR, Binns M, Gibb H. Morphological traits: predictable responses to macrohabitats across a 300 km scale. PeerJ. 2014;2:e271. doi: 10.7717/peerj.271. PubMed DOI PMC
Gibb H, et al. Does morphology predict trophic position and habitat use of ant species and assemblages? Oecologia. 2015;177(2):519–531. doi: 10.1007/s00442-014-3101-9. PubMed DOI
Parr CL, et al. GlobalAnts: a new database on the geography of ant traits (Hymenoptera: Formicidae) Insect Conservation and Diversity. 2017;10(1):5–20. doi: 10.1111/icad.12211. DOI
Pakeman RJ, Quested HM. Sampling plant functional traits: what proportion of the species need to be measured? Applied Vegetation Science. 2017;10(1):91–96. doi: 10.1111/j.1654-109X.2007.tb00507.x. DOI
Pakeman RJ. Functional trait metrics are sensitive to the completeness of the species’ trait data? Methods in Ecology and Evolution. 2014;5(1):9–15. doi: 10.1111/2041-210X.12136. DOI
Májeková M, et al. Evaluating functional diversity: missing trait data and the importance of species abundance structure and data transformation. PloS one. 2016;11(2):e0149270. doi: 10.1371/journal.pone.0149270. PubMed DOI PMC
Silva RR, Brandão CRF. Ecosystem-wide morphological structure of leaf-litter ant communities along a tropical latitudinal gradient. PloS one. 2014;9(3):e93049. doi: 10.1371/journal.pone.0093049. PubMed DOI PMC
Baselga A. (2010). Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography. 2014;19(1):134–143. doi: 10.1111/j.1466-8238.2009.00490.x. DOI
Baselga A, Orme CDL. Betapart: an R package for the study of beta diversity. Methods in Ecology and Evolution. 2012;3(5):808–812. doi: 10.1111/j.2041-210X.2012.00224.x. DOI
R Core Team R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, http://www.R-project.org/ (2017).
Garnier E, et al. Plant functional markers capture ecosystem properties during secondary succession. Ecology. 2004;85(9):2630–2637. doi: 10.1890/03-0799. DOI
Diaz S, et al. The plant traits that drive ecosystems: evidence from three continents. Journal of Vegetation Science. 2004;15(3):295–304. doi: 10.1111/j.1654-1103.2004.tb02266.x. DOI
Carmona CP, de Bello F, Mason NW, Lepš J. The density awakens: a reply to Blonder. Trends in ecology & evolution. 2016;31(9):667–669. doi: 10.1016/j.tree.2016.07.003. PubMed DOI
Moretti M, De Bello F, Roberts SP, Potts SG. Taxonomical vs. functional responses of bee communities to fire in two contrasting climatic regions. Journal of Animal Ecology. 2009;78(1):98–108. doi: 10.1111/j.1365-2656.2008.01462.x. PubMed DOI
Botta‐Dukát Z. Rao’s quadratic entropy as a measure of functional diversity based on multiple traits. Journal of Vegetation Science. 2005;16(5):533–540. doi: 10.1111/j.1654-1103.2005.tb02393.x. DOI
Longino, J. T. What to do with the data. in Ants: standard methods for measuring and monitoring biodiversity (ed. Agosti, D., Majer, J., Alonso, E. & Schultz, T. R.) 186–203, (Washigton, 2000).
Leponce M, Theunis L, Delabie J, Roisin Y. Scale dependence of diversity measures in a leaf-litter ant assemblage. Ecography. 2004;27:253–267. doi: 10.1111/j.0906-7590.2004.03715.x. DOI
Mouillot D, Graham NAS, Mason NW, Bellwood DR. A functional approach reveals community responses to disturbances. Trends in Ecology & Evolution. 2013;28(3):167–177. doi: 10.1016/j.tree.2012.10.004. PubMed DOI
Laliberté E, Legendre P, Shipley B. FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version. 2014;1:0–12. PubMed
Blonder B, Lamanna C, Violle C, Enquist BJ. The n‐dimensional hypervolume. Global Ecology and Biogeography. 2014;23(5):595–609. doi: 10.1111/geb.12146. DOI
Siegel, S. & Castellan, N. J. Nonparametric statistics for the behavioral sciences. McGraw-HiU Book Company, New York (1988).
Anderson, M. J. Permutational multivariate analysis of variance. Department of Statistics, University of Auckland, Auckland (2001).
Oksanen J, et al. The vegan package. Community ecology package. 2007;10:631–637.
Wickham, H. Ggplot2: elegant graphics for data analysis. Springer (2016).
Kaspari M. Body size and microclimate use in Neotropical granivorous ants. Oecologia. 1993;96(4):500–507. doi: 10.1007/BF00320507. PubMed DOI
Weiser MD, Kaspari M. Ecological morphospace of New World ants. Ecological Entomology. 2006;31(2):131–142. doi: 10.1111/j.0307-6946.2006.00759.x. DOI
Fowler, H. G., Forti, L. C., Brandão, C. R. F., Delabie, J. H. C. & Vasconcelos, H. L. Ecologia nutricional de formigas. Ecologia nutricional de insetos e suas implicações no manejo de pragas, 131–223 (1991).
Gronenberg W. The trap-jaw mechanism in the dacetine ants Daceton armigerum and Strumigenys sp. Journal of Experimental Biology. 1996;199(9):2021–2033. PubMed
Bauer T, Desender K, Morwinsky T, Betz O. Eye morphology reflects habitat demands in three closely related ground beetle species (Coleoptera: Carabidae) Journal of Zoology. 1998;245(4):467–472. doi: 10.1111/j.1469-7998.1998.tb00121.x. DOI
Traniello JFA. Comparative foraging ecology of north temperate ants: the role of worker size and cooperative foraging in prey selection. Insectes Sociaux. 1987;34(2):118–130. doi: 10.1007/BF02223830. DOI
Kaspari M. Worker size and seed size selection by harvester ants in a Neotropical forest. Oecologia. 1996;105(3):397–404. doi: 10.1007/BF00328743. PubMed DOI
Kaspari M, Weiser MD. The size–grain hypothesis and interspecific scaling in ants. Functional Ecology. 1999;13(4):530–538. doi: 10.1046/j.1365-2435.1999.00343.x. DOI
Feener, D. H. Jr., Lighton, J. R. B. & Bartholomew, G. A. Curvilinear allometry, energetics and foraging ecology: a comparison of leaf-cutting ants and army ants. Functional Ecology, 509–520 (1988).
Wiescher PT, Pearce-Duvet JM, Feener DH. Assembling an ant community: species functional traits reflect environmental filtering. Oecologia. 2012;169(4):1063–1074. doi: 10.1007/s00442-012-2262-7. PubMed DOI