The role of immune cell subpopulations in the growth and rejection of TC-1/A9 tumors in novel mouse strains differing in the H2-D haplotype and NKC domain

. 2018 Mar ; 15 (3) : 3594-3601. [epub] 20180110

Status PubMed-not-MEDLINE Jazyk angličtina Země Řecko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29467880

The present study aimed to elucidate the role of cluster of differentiation (CD)8+, CD4+, natural killer (NK), and myeloid (CD11b+) cells in the course of the growth and rejection of experimental major histocompatibility complex (MHC) class I-deficient, HPV16 E6/E7-associated TC-1/A9 tumors in mice. Stable mouse lines (F30) generated by inbreeding of Balb/c and C57BL/6 strains, which were characterized by H-2Db+d-NK1.1neg (B6-neg) and H-2Db-d+NK1.1high (Balb-high) phenotypes, were used for the present study. The novel strains spontaneously regressed tumors in 70-90% of cases. Ex vivo histological analysis of the tumor microenvironment in cryosections showed an indirect correlation between the growth of the transplanted tumor (progressor vs. regressor mice) and the proportion of immunocompetent cell infiltration in the tumors. The regressor mice exhibited a higher infiltration of tumors with CD4+ and CD8+ cells, and in Balb-high with NK cells as well, compared with the progressors. All tumor transplants also indicated a huge infiltration of CD11b+ cells, but this infiltration was not dependent on the stage of the TC-1/A9 tumor development. Depletion of individual cell subpopulations in vivo exhibited different effects on the tumor development in the two strains. Elimination of CD8-positive cells enhanced growth of TC-1/A9 tumor transplants in both hybrid stains, whereas CD4+ cell depletion affected rejection of TC-1/A9 tumors in the B6-neg mice only. Depletion of NK cells with anti-asialo GM1 antibody in the Balb-high strain led to enhancement of tumor growth, which was more pronounced after depletion of the NK1.1+ subpopulation. On the other hand, depletion of NK cells with anti-asialo GM1 in B6-neg mice did not affect the regression of TC-1/A9 tumor transplants, but increased the CD11b+ cell infiltration. In summary, these results indicate that co-operation of particular subsets of immunocompetent cells is essential for the rejection of TC-1/A9 tumor transplants. In B6-neg mice, the co-operative action of CD8+ and CD4+ cells is required, whereas in Balb-high mice, the synergy of CD8+ and NK1.1+ cells is of major importance.

Zobrazit více v PubMed

Swann JB, Smyth MJ. Immune surveillance of tumors. J Clin Invest. 2007;117:1137–1146. doi: 10.1172/JCI31405. PubMed DOI PMC

Xu D, Gu P, Pan PY, Li Q, Sato AI, Chen SH. NK and CD8+ T cell-mediated eradication of poorly immunogenic B16-F10 melanoma by the combined action of IL-12 gene therapy and 4-1BB costimulation. Int J Cancer. 2004;109:499–506. doi: 10.1002/ijc.11696. PubMed DOI

Ghiringhelli F, Apetoh L, Housseau F, Kroemer G, Zitvogel L. Links between innate and cognate tumor immunity. Curr Opin Immunol. 2007;19:224–231. doi: 10.1016/j.coi.2007.02.003. PubMed DOI

Fišerová A, Richter J, Čapková K, Bieblová J, Mikyšková R, Reiniš M, Indrová M. Resistance of novel mouse strains different in MHC class I and the NKC domain to the development of experimental tumors. Int J Oncol. 2016;49:763–772. doi: 10.3892/ijo.2016.3561. PubMed DOI

Indrová M, Símová J, Bieblová J, Bubeník J, Reinis M. NK1.1+ cells are important for the development of protective immunity against MHC I-deficient, HPV16-associated tumours. Oncol Rep. 2011;25:281–288. PubMed

Indrová M, Bieblová J, Rossowska J, Kuropka P, Pajtasz-Piasecka E, Bubeník J, Reinis M. HPV 16-associated tumours: IL-12 can repair the absence of cytotoxic and proliferative responses of tumour infiltrating cells after chemotherapy. Int J Oncol. 2009;34:173–179. PubMed

Mikyšková R, Indrová M, Vlková V, Bieblová J, Šímová J, Paračková Z, Pajtasz-Piasecka E, Rossowska J, Reiniš M. DNA demethylating agent 5-azacytidine inhibits myeloid-derived suppressor cells induced by tumor growth and cyclophosphamide treatment. J Leukoc Biol. 2014;95:743–753. doi: 10.1189/jlb.0813435. PubMed DOI

Kodumudi KN, Siegel J, Weber AM, Scott E, Sarnaik AA, Pilon-Thomas S. Immune checkpoint blockade to improve tumor infiltrating lymphocytes for adoptive cell therapy. PLoS One. 2016;11:e0153053. doi: 10.1371/journal.pone.0153053. PubMed DOI PMC

Yu P, Fu YX. Tumor-infiltrating T lymphocytes: Friends or foes? Lab Invest. 2006;86:231–245. doi: 10.1038/labinvest.3700389. PubMed DOI

Smahel M, Síma P, Ludvíková V, Marinov I, Pokorná D, Vonka V. Immunisation with modified HPV16 E7 genes against mouse oncogenic TC-1 cell sublines with downregulated expression of MHC class I molecules. Vaccine. 2003;21:1125–1136. doi: 10.1016/S0264-410X(02)00519-4. PubMed DOI

Lin KY, Guarnieri FG, Staveley-O'Carroll KF, Levitsky HI, August JT, Pardoll DM, Wu TC. Treatment of established tumors with a novel vaccine that enhances major histocompatibility class II presentation of tumor antigen. Cancer Res. 1996;56:21–26. PubMed

Mikysková R, Bubeník J, Vonka V, Smahel M, Indrova M, Bieblová J, Símová J, Jandlová T. Immune escape phenotype of HPV16-associated tumours: MHC class I expression changes during progression and therapy. Int J Oncol. 2005;26:521–527. PubMed

Símová J, Bubeník J, Bieblová J, Rosalia RA, Fric J, Reinis M. Depletion of T (reg) cells inhibits minimal residual disease after surgery of HPV16-associated tumours. Int J Oncol. 2006;29:1567–1571. PubMed

Manning J, Indrova M, Lubyova B, Pribylova H, Bieblova J, Hejnar J, Simova J, Jandlova T, Bubenik J, Reinis M. Induction of MHC class I molecule cell surface expression and epigenetic activation of antigen-processing machinery components in a murine model for human papilloma virus 16-associated tumours. Immunology. 2008;123:218–227. PubMed PMC

Rossowska J, Pajtasz-Piasecka E, Szyda A, Zietara N, Duś D. Tissue localization of tumor antigen-loaded mouse dendritic cells applied as an anti-tumor vaccine and their influence on immune response. Folia Histochem Cytobiol. 2007;45:349–355. PubMed

Hadrup S, Donia M, Thor Straten P. Effector CD4 and CD8 T cells and their role in the tumor microenvironment. Cancer Microenviron. 2013;6:123–133. doi: 10.1007/s12307-012-0127-6. PubMed DOI PMC

Luckheeram RV, Zhou R, Verma AD, Xia B. CD4+T cells: Differentiation and functions. Clin Dev Immunol. 2012;2012:925135. doi: 10.1155/2012/925135. PubMed DOI PMC

Koretzky GA. Multiple roles of CD4 and CD8 in T cell activation. J Immunol. 2010;185:2643–2644. doi: 10.4049/jimmunol.1090076. PubMed DOI

Smyth MJ, Crowe NY, Godfrey DI. NK cells and NKT cells collaborate in host protection from methylcholanthrene-induced fibrosarcoma. Int Immunol. 2001;13:459–463. doi: 10.1093/intimm/13.4.459. PubMed DOI

Bendelac A, Savage PB, Teyton L. The biology of NKT cells. Annu Rev Immunol. 2007;25:297–336. doi: 10.1146/annurev.immunol.25.022106.141711. PubMed DOI

Símová J, Indrová M, Bieblová J, Mikysková R, Bubeník J, Reinis M. Therapy for minimal residual tumor disease: Beta-galactosylceramide inhibits the growth of recurrent HPV16-associated neoplasms after surgery and chemotherapy. Int J Cancer. 2010;126:2997–3004. PubMed

Nishikado H, Mukai K, Kawano Y, Minegishi Y, Karasuyama H. NK cell-depleting anti-asialo GM1 antibody exhibits a lethal off-target effect on basophils in vivo. J Immunol. 2011;186:5766–5771. doi: 10.4049/jimmunol.1100370. PubMed DOI

Tomar MS, Kumar S, Kumar S, Gautam PK, Singh RK, Verma PK, Singh SP, Acharya A. NK cell effector functions regulation by modulating nTreg cell population during progressive growth of Dalton's lymphoma in mice. Immunol Invest. 2017;11:1–17. PubMed

da Cunha A, Antoniazi Michelin M, Cândido Murta EF. Phenotypic profile of dendritic and T cells in the lymph node of Balb/C mice with breast cancer submitted to dendritic cells immunotherapy. Immunol Lett. 2016;177:25–37. doi: 10.1016/j.imlet.2016.07.009. PubMed DOI

Zalli A, Bosch JA, Goodyear O, Riddell N, McGettrick HM, Moss P, Wallace GR. Targeting β2 adrenergic receptors regulate human T cell function directly and indirectly. Brain Behav Immun. 2015;45:211–218. doi: 10.1016/j.bbi.2014.12.001. PubMed DOI

Sato Y, Shimizu K, Shinga J, Hidaka M, Kawano F, Kakimi K, Yamasaki S, Asakura M, Fujii SI. Characterization of the myeloid-derived suppressor cell subset regulated by NK cells in malignant lymphoma. Oncoimmunology. 2015;4:e995541. doi: 10.1080/2162402X.2014.995541. PubMed DOI PMC

Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009;9:162–174. doi: 10.1038/nri2506. PubMed DOI PMC

Mikyšková R, Indrová M, Símová J, Bieblová J, Bubeník J, Reiniš M. Genetically modified tumour vaccines producing IL-12 augment chemotherapy of HPV16-associated tumours with gemcitabine. Oncol Rep. 2011;25:1683–1689. PubMed

Gabrilovich DI, Ostrand-Rosenberg S, Bronte V. Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol. 2012;12:253–268. doi: 10.1038/nri3175. PubMed DOI PMC

Umansky V, Sevko A. Tumor microenvironment and myeloid-derived suppressor cells. Cancer Microenviron. 2013;6:169–177. doi: 10.1007/s12307-012-0126-7. PubMed DOI PMC

Sevko A, Umansky V. Myeloid-derived suppressor cells interact with tumors in terms of myelopoiesis, tumorigenesis and immunosuppression: Thick as thieves. J Cancer. 2013;4:3–11. doi: 10.7150/jca.5047. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace