A new allele of the Brachytic2 gene in maize can efficiently modify plant architecture

. 2018 Jul ; 121 (1) : 75-86. [epub] 20180223

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29472693
Odkazy

PubMed 29472693
PubMed Central PMC5997708
DOI 10.1038/s41437-018-0056-3
PII: 10.1038/s41437-018-0056-3
Knihovny.cz E-zdroje

The applications of semi-dwarf genes such as sd1 and Rht1 in rice and wheat resulted in the first "green revolution" in the 1960s. However, such semi-dwarf genes that can efficiently reduce plant stature and have few negative yield traits have not yet been identified in maize. In this study, a new allele of Brachytic2 gene (qpa1) encoding P-glycoprotein was rapidly fine-mapped using a modified method. The qpa1, containing a 241-bp deletion in the last exon, had no negative effect on yield, but greatly modified the plant architecture including significantly reduced plant height and ear height, increased stalk diameter and erected leaf. A common variant similar to maize qpa1 was also present in the sorghum orthologous dw3 locus. Comparative RNA-seq analysis next showed 99 differentially co-expressed genes affected by Br2 in maize and dw3 in sorghum, including four plant height genes D3, BAK1, Actin7 and Csld1, which are involved in gibberellin and brassinosteroid biosynthesis, auxin transport and cellulose synthesis. The qpa1 can be applied to efficiently modify plant stature in maize and in combination with D3, BAK1, Actin7, Csld1 and the other 95 differentially co-expressed genes, can be edited using new genomic editing tools for further applications and studies.

Zobrazit více v PubMed

Bensen RJ, Johal GS, Crane VC, Tossberg JT, Schnable PS, Meeley RB, et al. Cloning and characterization of the maize An1 gene. Plant Cell. 1995;7(1):75–84. doi: 10.1105/tpc.7.1.75. PubMed DOI PMC

Bernacchi D, Beck-Bunn T, Eshed Y, Lopez J, Petiard V, Uhlig J, et al. Advanced backcross QTL analysis in tomato. I. Identification of QTLs for traits of agronomic importance from Lycopersicon hirsutum. Theor Appl Genet. 1998;97(3):381–397. doi: 10.1007/s001220050908. DOI

Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC

Broman KW, Wu H, Sen S, Churchill GA. R/qtl: QTL mapping in experimental crosses. Bioinformatics. 2003;19(7):889–890. doi: 10.1093/bioinformatics/btg112. PubMed DOI

Brown PJ, Rooney WL, Franks C, Kresovich S. Efficient mapping of plant height quantitative trait loci in a sorghum association population with introgressed dwarfing genes. Genetics. 2008;180(1):629–637. doi: 10.1534/genetics.108.092239. PubMed DOI PMC

Cong L, Ran FA, Cox D, Lin SL, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339(6121):819–823. doi: 10.1126/science.1231143. PubMed DOI PMC

Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21. doi: 10.1093/bioinformatics/bts635. PubMed DOI PMC

Duvick DN. Genetic progress in yield of United States Maize (Zea Mays L.) Maydica. 2005;50(3-4):193–202.

Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One. 2011;6(5):e19379. doi: 10.1371/journal.pone.0019379. PubMed DOI PMC

Freeling M. Bias in plant gene content following different sorts of duplication: tandem, whole-genome, segmental, or by transposition. Annu Rev Plant Biol. 2009;60:433–453. doi: 10.1146/annurev.arplant.043008.092122. PubMed DOI

Hedden P. The genes of the Green Revolution. Trends Genet. 2003;19(1):5–9. doi: 10.1016/S0168-9525(02)00009-4. PubMed DOI

Huang XH, Feng Q, Qian Q, Zhao Q, Wang L, Wang AH, et al. High-throughput genotyping by whole-genome resequencing. Genome Res. 2009;19(6):1068–1076. doi: 10.1101/gr.089516.108. PubMed DOI PMC

Kersey PJ, Allen JE, Armean I, Boddu S, Bolt BJ, Carvalho-Silva D, et al. Ensembl Genomes 2016: more genomes, more complexity. Nucleic Acids Res. 2016;44(D1):D574–D580. doi: 10.1093/nar/gkv1209. PubMed DOI PMC

Kinsella RJ, Kahari A, Haider S, Zamora J, Proctor G, Spudich G et al. (2011). Ensembl BioMarts: a hub for data retrieval across taxonomic space. Database Article ID bar 030: 1–9 PubMed PMC

Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10(3):1–10. doi: 10.1186/gb-2009-10-3-r25. PubMed DOI PMC

Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25(14):1754–1760. doi: 10.1093/bioinformatics/btp324. PubMed DOI PMC

Li X, Li XR, Fridman E, Tesso TT, Yu JM. Dissecting repulsion linkage in the dwarfing gene Dw3 region for sorghum plant height provides insights into heterosis. Proc Natl Acad Sci USA. 2015;112(38):11823–11828. doi: 10.1073/pnas.1509229112. PubMed DOI PMC

Liu H, Liu H, Zhou L, Zhang Z, Zhang X, Wang M, et al. Parallel domestication of the heading date 1 gene in cereals. Mol Biol Evol. 2015;32(10):2726–2737. doi: 10.1093/molbev/msv148. PubMed DOI

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods. 2001;25(4):402–408. doi: 10.1006/meth.2001.1262. PubMed DOI

McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297–1303. doi: 10.1101/gr.107524.110. PubMed DOI PMC

Multani DS, Briggs SP, Chamberlin MA, Blakeslee JJ, Murphy AS, Johal GS. Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants. Science. 2003;302(5642):81–84. doi: 10.1126/science.1086072. PubMed DOI

Nicol JW, Helt GA, Blanchard SG, Raja A, Loraine AE. The Integrated Genome Browser: free software for distribution and exploration of genome-scale datasets. Bioinformatics. 2009;25(20):2730–2731. doi: 10.1093/bioinformatics/btp472. PubMed DOI PMC

Peiffer JA, Romay MC, Gore MA, Flint-Garcia SA, Zhang Z, Millard MJ, et al. The genetic architecture of maize height. Genetics. 2014;196(4):1337–1356. doi: 10.1534/genetics.113.159152. PubMed DOI PMC

Peng JR, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, et al. ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature. 1999;400(6741):256–261. doi: 10.1038/22307. PubMed DOI

Pilu R, Cassani E, Villa D, Curiale S, Panzeri D, Cerino Badone F, et al. Isolation and characterization of a new mutant allele of brachytic 2 maize gene. Mol Breed. 2007;20(2):83–91. doi: 10.1007/s11032-006-9073-7. DOI

Salazar AM (1985). Effects of mass selection for ear length in maize. Retrosp Theses Dissertations. 8745. http://lib.dr.iastate.edu/rtd/8745.

Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, et al. Green revolution: a mutant gibberellin-synthesis gene in rice—new insight into the rice variant that helped to avert famine over thirty years ago. Nature. 2002;416(6882):701–702. doi: 10.1038/416701a. PubMed DOI

Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L. Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat Biotechnol. 2013;31(1):46–53. doi: 10.1038/nbt.2450. PubMed DOI PMC

Winkler RG, Helentjaris T. The maize Dwarf3 gene encodes a cytochrome P450-mediated early step in gibberellin biosynthesis. Plant Cell. 1995;7(8):1307–1317. doi: 10.1105/tpc.7.8.1307. PubMed DOI PMC

Xing AQ, Gao YF, Ye LF, Zhang WP, Cai LC, Ching A, et al. A rare SNP mutation in Brachytic2 moderately reduces plant height and increases yield potential in maize. J Exp Bot. 2015;66(13):3791–3802. doi: 10.1093/jxb/erv182. PubMed DOI PMC

Yang N, Lu YL, Yang XH, Huang J, Zhou Y, Ali F et al. (2014). Genome wide association studies using a new nonparametric model reveal the genetic architecture of 17 agronomic traits in an enlarged maize association panel. PLoS Genet 10(9) PubMed PMC

Yang XH, Gao SB, Xu ST, Zhang ZX, Prasanna BM, Li L, et al. Characterization of a global germplasm collection and its potential utilization for analysis of complex quantitative traits in maize. Mol Breed. 2011;28(4):511–526. doi: 10.1007/s11032-010-9500-7. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

The tin1 gene retains the function of promoting tillering in maize

. 2019 Dec 06 ; 10 (1) : 5608. [epub] 20191206

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...