The tin1 gene retains the function of promoting tillering in maize
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31811145
PubMed Central
PMC6898233
DOI
10.1038/s41467-019-13425-6
PII: 10.1038/s41467-019-13425-6
Knihovny.cz E-zdroje
- MeSH
- fenotyp MeSH
- genetické lokusy MeSH
- kukuřice setá genetika růst a vývoj metabolismus MeSH
- lokus kvantitativního znaku MeSH
- regulace genové exprese u rostlin MeSH
- rostlinné geny genetika MeSH
- rostlinné proteiny genetika metabolismus MeSH
- vývoj rostlin genetika fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- rostlinné proteiny MeSH
Sweet maize and popcorn retain tillering growth habit during maize diversification. However, the underlying molecular genetic mechanism remains unknown. Here, we show that the retention of maize tillering is controlled by a major quantitative trait locus (QTL), tin1, which encodes a C2H2-zinc-finger transcription factor that acts independently of tb1. In sweet maize, a splice-site variant from G/GT to C/GT leads to intron retention, which enhances tin1 transcript levels and consequently increases tiller number. Comparative genomics analysis and DNA diversity analysis reveal that tin1 is under parallel selection across different cereal species. tin1 is involved in multiple pathways, directly represses two tiller-related genes, gt1 and Laba1/An-2, and interacts with three TOPLESS proteins to regulate the outgrowth of tiller buds. Our results support that maize tin1, derived from a standing variation in wild progenitor teosinte population, determines tillering retention during maize diversification.
Zobrazit více v PubMed
Doebley JF, Gaut BS, Smith BD. The molecular genetics of crop domestication. Cell. 2006;127:1309–1321. doi: 10.1016/j.cell.2006.12.006. PubMed DOI
Doebley J, Stec A, Hubbard L. The evolution of apical dominance in maize. Nature. 1997;386:485–488. doi: 10.1038/386485a0. PubMed DOI
Studer A, Zhao Q, Ross-Ibarra J, Doebley J. Identification of a functional transposon insertion in the maize domestication gene tb1. Nat. Genet. 2011;43:1160–1164. doi: 10.1038/ng.942. PubMed DOI PMC
Crockett RP, Crookston RK. Tillering of sweet corn reduced by clipping of early leaves. J. Am. Soc. Hortic. Sci. 1980;105:565–567.
Kebrom TH, Brutnell TP. The molecular analysis of the shade avoidance syndrome in the grasses has begun. J. Exp. Bot. 2007;58:3079–3089. doi: 10.1093/jxb/erm205. PubMed DOI
Poethig, R. S. in The maize handbook. 11–12 (Springer Verlag, New York, 1993).
Whipple CJ, et al. grassy tillers1 promotes apical dominance in maize and responds to shade signals in the grasses. Proc. Natl Acad. Sci. USA. 2011;108:E506–E512. doi: 10.1073/pnas.1102819108. PubMed DOI PMC
Dong ZB, et al. Ideal crop plant architecture is mediated by tassels replace upper ears1, a BTB/POZ ankyrin repeat gene directly targeted by TEOSINTE BRANCHED1. Proc. Natl Acad. Sci. USA. 2017;114:E8656–E8664. doi: 10.1073/pnas.1714960114. PubMed DOI PMC
Kebrom T. H. & Brutnell T. P. Tillering in the sugary1 sweet corn is maintained by overriding the teosinte branched1 repressive signal. Plant Signal. Behav. 10, e1078954 (2015). PubMed PMC
Lin ZW, et al. Parallel domestication of the Shattering1 genes in cereals. Nat. Genet. 2012;44:720–724. doi: 10.1038/ng.2281. PubMed DOI PMC
Liu HH, et al. Parallel domestication of the Heading Date 1 gene in cereals. Mol. Biol. Evol. 2015;32:2726–2737. doi: 10.1093/molbev/msv148. PubMed DOI
Schnable PS, et al. The B73 maize genome: complexity, diversity, and dynamics. Science. 2009;326:1112–1115. doi: 10.1126/science.1178534. PubMed DOI
International Rice Genome Sequencing P. The map-based sequence of the rice genome. Nature. 2005;436:793–800. doi: 10.1038/nature03895. PubMed DOI
Paterson AH, et al. The Sorghum bicolor genome and the diversification of grasses. Nature. 2009;457:551–556. doi: 10.1038/nature07723. PubMed DOI
Zhang G, et al. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat. Biotech. 2012;30:549–554. doi: 10.1038/nbt.2195. PubMed DOI
Kebrom TH, Brutnell TP, Finlayson SA. Suppression of sorghum axillary bud outgrowth by shade, phyB and defoliation signalling pathways. Plant, Cell Environ. 2010;33:48–58. PubMed
Kebrom TH, et al. Inhibition of tiller bud outgrowth in the tin mutant of wheat is associated with precocious internode development. Plant Physiol. 2012;160:308–318. doi: 10.1104/pp.112.197954. PubMed DOI PMC
Yang YL, et al. Cloning and functional analysis of pale-green leaf (PGL10) in rice (Oryza sativa L.) Plant Growth Regul. 2016;78:69–77. doi: 10.1007/s10725-015-0075-5. DOI
Kong WY, et al. The catalytic subunit of magnesium-protoporphyrin IX monomethyl ester cyclase forms a chloroplast complex to regulate chlorophyll biosynthesis in rice. Plant Mol. Biol. 2016;92:177–191. doi: 10.1007/s11103-016-0513-4. PubMed DOI
Hua L, et al. LABA1, a domestication gene associated with long, barbed awns in wild rice. Plant Cell. 2015;27:1875–1888. doi: 10.1105/tpc.15.00260. PubMed DOI PMC
Gu BG, et al. An-2 encodes a cytokinin synthesis enzyme that regulates awn length and grain production in rice. Mol. Plant. 2015;8:1635–1650. doi: 10.1016/j.molp.2015.08.001. PubMed DOI
Szemenyei H, Hannon M, Long JA. TOPLESS mediates auxin-dependent transcriptional repression during Arabidopsis embryogenesis. Science. 2008;319:1384–1386. doi: 10.1126/science.1151461. PubMed DOI
Long JA, Ohno C, Smith ZR, Meyerowitz EM. TOPLESS regulates apical embryonic fate in Arabidopsis. Science. 2006;312:1520–1523. doi: 10.1126/science.1123841. PubMed DOI
Liu X, Galli M, Camehl I, Gallavotti A. RAMOSA1 ENHANCER LOCUS2-mediated transcriptional repression regulates vegetative and reproductive architecture. Plant Physiol. 2019;179:348–363. doi: 10.1104/pp.18.00913. PubMed DOI PMC
Jiang L, et al. DWARF 53 acts as a repressor of strigolactone signalling in rice. Nature. 2013;504:401–405. doi: 10.1038/nature12870. PubMed DOI PMC
Tan L, et al. Control of a key transition from prostrate to erect growth in rice domestication. Nat. Genet. 2008;40:1360–1364. doi: 10.1038/ng.197. PubMed DOI
Jin J, et al. Genetic control of rice plant architecture under domestication. Nat. Genet. 2008;40:1365–1369. doi: 10.1038/ng.247. PubMed DOI
Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989;123:585–595. PubMed PMC
Chen H, Patterson N, Reich D. Population differentiation as a test for selective sweeps. Genome Res. 2010;20:393–402. doi: 10.1101/gr.100545.109. PubMed DOI PMC
Arite T, et al. d14, a Strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers. Plant Cell Physiol. 2009;50:1416–1424. doi: 10.1093/pcp/pcp091. PubMed DOI
Ishikawa S, et al. Suppression of tiller bud activity in tillering dwarf mutants of rice. Plant Cell Physiol. 2005;46:79–86. doi: 10.1093/pcp/pci022. PubMed DOI
Zhang BC, et al. A missense mutation in the transmembrane domain of CESA4 affects protein abundance in the plasma membrane and results in abnormal cell wall biosynthesis in rice. Plant Mol. Biol. 2009;71:509–524. doi: 10.1007/s11103-009-9536-4. PubMed DOI
Wang DF, et al. A missense mutation in the zinc finger domain of OsCESA7 deleteriously affects cellulose biosynthesis and plant growth in rice. PLoS One. 2016;11:e0153993. doi: 10.1371/journal.pone.0153993. PubMed DOI PMC
Wang DF, et al. A missense mutation in the transmembrane domain of CESA9 affects cell wall biosynthesis and plant growth in rice. Plant Sci. 2012;196:117–124. doi: 10.1016/j.plantsci.2012.08.002. PubMed DOI
Hanna HaS R. Yield of supper sweet corn as affected by N application timing, plant density, tiller removal, and insecticides. Proc. Fla. State Horticultural Soc. 1992;105:343–344.
Akman Z. Effect of tiller removing and plant density on ear yield of sweet corn (Zea mays saccharata Sturt) Pak. J. Biol. Sci. 2002;5:906–909. doi: 10.3923/pjbs.2002.906.908. DOI
Flint-Garcia SA, et al. Maize association population: a high-resolution platform for quantitative trait locus dissection. Plant J. 2005;44:1054–1064. doi: 10.1111/j.1365-313X.2005.02591.x. PubMed DOI
Broman KW, Wu H, Sen S, Churchill GA. R/qtl: QTL mapping in experimental crosses. Bioinformatics. 2003;19:889–890. doi: 10.1093/bioinformatics/btg112. PubMed DOI
Wang J, Zhang X, Lin ZW. QTL mapping in a maize F-2 population using genotyping-by-sequencing and a modified fine-mapping strategy. Plant Sci. 2018;276:171–180. doi: 10.1016/j.plantsci.2018.08.019. PubMed DOI
Vega JM, Yu WC, Kennon AR, Chen XL, Zhang ZYJ. Improvement of Agrobacterium-mediated transformation in Hi-II maize (Zea mays) using standard binary vectors. Plant Cell Rep. 2008;27:297–305. doi: 10.1007/s00299-007-0463-z. PubMed DOI
Bukowski R, et al. Construction of the third-generation Zea mays haplotype map. GigaScience. 2018;7:1–12. doi: 10.1093/gigascience/gix134. PubMed DOI PMC
Bradbury PJ, et al. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics. 2007;23:2633–2635. doi: 10.1093/bioinformatics/btm308. PubMed DOI
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Wei L, Zhang X, Zhang ZH, Liu HH, Lin ZW. A new allele of the Brachytic2 gene in maize can efficiently modify plant architecture. Heredity. 2018;121:75–86. doi: 10.1038/s41437-018-0056-3. PubMed DOI PMC
Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009;25:1451–1452. doi: 10.1093/bioinformatics/btp187. PubMed DOI
Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016;33:1870–1874. doi: 10.1093/molbev/msw054. PubMed DOI PMC
Chia JM, et al. Maize HapMap2 identifies extant variation from a genome in flux. Nat. Genet. 2012;44:803–807. doi: 10.1038/ng.2313. PubMed DOI
Hufford MB, et al. Comparative population genomics of maize domestication and improvement. Nat. Genet. 2012;44:808–811. doi: 10.1038/ng.2309. PubMed DOI PMC
Wang M, et al. Parallel selection on a dormancy gene during domestication of crops from multiple families. Nat. Genet. 2018;50:1435–1441. doi: 10.1038/s41588-018-0229-2. PubMed DOI
Danecek P, et al. The variant call format and VCFtools. Bioinformatics. 2011;27:2156–2158. doi: 10.1093/bioinformatics/btr330. PubMed DOI PMC
McMullen MD, et al. Genetic properties of the maize nested association mapping population. Science. 2009;325:737–740. doi: 10.1126/science.1174320. PubMed DOI
Wei LH, et al. The m(6)A reader ECT2 controls trichome morphology by affecting mRNA stability in Arabidopsis. Plant Cell. 2018;30:968–985. doi: 10.1105/tpc.17.00934. PubMed DOI PMC