The tin1 gene retains the function of promoting tillering in maize

. 2019 Dec 06 ; 10 (1) : 5608. [epub] 20191206

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31811145
Odkazy

PubMed 31811145
PubMed Central PMC6898233
DOI 10.1038/s41467-019-13425-6
PII: 10.1038/s41467-019-13425-6
Knihovny.cz E-zdroje

Sweet maize and popcorn retain tillering growth habit during maize diversification. However, the underlying molecular genetic mechanism remains unknown. Here, we show that the retention of maize tillering is controlled by a major quantitative trait locus (QTL), tin1, which encodes a C2H2-zinc-finger transcription factor that acts independently of tb1. In sweet maize, a splice-site variant from G/GT to C/GT leads to intron retention, which enhances tin1 transcript levels and consequently increases tiller number. Comparative genomics analysis and DNA diversity analysis reveal that tin1 is under parallel selection across different cereal species. tin1 is involved in multiple pathways, directly represses two tiller-related genes, gt1 and Laba1/An-2, and interacts with three TOPLESS proteins to regulate the outgrowth of tiller buds. Our results support that maize tin1, derived from a standing variation in wild progenitor teosinte population, determines tillering retention during maize diversification.

Zobrazit více v PubMed

Doebley JF, Gaut BS, Smith BD. The molecular genetics of crop domestication. Cell. 2006;127:1309–1321. doi: 10.1016/j.cell.2006.12.006. PubMed DOI

Doebley J, Stec A, Hubbard L. The evolution of apical dominance in maize. Nature. 1997;386:485–488. doi: 10.1038/386485a0. PubMed DOI

Studer A, Zhao Q, Ross-Ibarra J, Doebley J. Identification of a functional transposon insertion in the maize domestication gene tb1. Nat. Genet. 2011;43:1160–1164. doi: 10.1038/ng.942. PubMed DOI PMC

Crockett RP, Crookston RK. Tillering of sweet corn reduced by clipping of early leaves. J. Am. Soc. Hortic. Sci. 1980;105:565–567.

Kebrom TH, Brutnell TP. The molecular analysis of the shade avoidance syndrome in the grasses has begun. J. Exp. Bot. 2007;58:3079–3089. doi: 10.1093/jxb/erm205. PubMed DOI

Poethig, R. S. in The maize handbook. 11–12 (Springer Verlag, New York, 1993).

Whipple CJ, et al. grassy tillers1 promotes apical dominance in maize and responds to shade signals in the grasses. Proc. Natl Acad. Sci. USA. 2011;108:E506–E512. doi: 10.1073/pnas.1102819108. PubMed DOI PMC

Dong ZB, et al. Ideal crop plant architecture is mediated by tassels replace upper ears1, a BTB/POZ ankyrin repeat gene directly targeted by TEOSINTE BRANCHED1. Proc. Natl Acad. Sci. USA. 2017;114:E8656–E8664. doi: 10.1073/pnas.1714960114. PubMed DOI PMC

Kebrom T. H. & Brutnell T. P. Tillering in the sugary1 sweet corn is maintained by overriding the teosinte branched1 repressive signal. Plant Signal. Behav. 10, e1078954 (2015). PubMed PMC

Lin ZW, et al. Parallel domestication of the Shattering1 genes in cereals. Nat. Genet. 2012;44:720–724. doi: 10.1038/ng.2281. PubMed DOI PMC

Liu HH, et al. Parallel domestication of the Heading Date 1 gene in cereals. Mol. Biol. Evol. 2015;32:2726–2737. doi: 10.1093/molbev/msv148. PubMed DOI

Schnable PS, et al. The B73 maize genome: complexity, diversity, and dynamics. Science. 2009;326:1112–1115. doi: 10.1126/science.1178534. PubMed DOI

International Rice Genome Sequencing P. The map-based sequence of the rice genome. Nature. 2005;436:793–800. doi: 10.1038/nature03895. PubMed DOI

Paterson AH, et al. The Sorghum bicolor genome and the diversification of grasses. Nature. 2009;457:551–556. doi: 10.1038/nature07723. PubMed DOI

Zhang G, et al. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat. Biotech. 2012;30:549–554. doi: 10.1038/nbt.2195. PubMed DOI

Kebrom TH, Brutnell TP, Finlayson SA. Suppression of sorghum axillary bud outgrowth by shade, phyB and defoliation signalling pathways. Plant, Cell Environ. 2010;33:48–58. PubMed

Kebrom TH, et al. Inhibition of tiller bud outgrowth in the tin mutant of wheat is associated with precocious internode development. Plant Physiol. 2012;160:308–318. doi: 10.1104/pp.112.197954. PubMed DOI PMC

Yang YL, et al. Cloning and functional analysis of pale-green leaf (PGL10) in rice (Oryza sativa L.) Plant Growth Regul. 2016;78:69–77. doi: 10.1007/s10725-015-0075-5. DOI

Kong WY, et al. The catalytic subunit of magnesium-protoporphyrin IX monomethyl ester cyclase forms a chloroplast complex to regulate chlorophyll biosynthesis in rice. Plant Mol. Biol. 2016;92:177–191. doi: 10.1007/s11103-016-0513-4. PubMed DOI

Hua L, et al. LABA1, a domestication gene associated with long, barbed awns in wild rice. Plant Cell. 2015;27:1875–1888. doi: 10.1105/tpc.15.00260. PubMed DOI PMC

Gu BG, et al. An-2 encodes a cytokinin synthesis enzyme that regulates awn length and grain production in rice. Mol. Plant. 2015;8:1635–1650. doi: 10.1016/j.molp.2015.08.001. PubMed DOI

Szemenyei H, Hannon M, Long JA. TOPLESS mediates auxin-dependent transcriptional repression during Arabidopsis embryogenesis. Science. 2008;319:1384–1386. doi: 10.1126/science.1151461. PubMed DOI

Long JA, Ohno C, Smith ZR, Meyerowitz EM. TOPLESS regulates apical embryonic fate in Arabidopsis. Science. 2006;312:1520–1523. doi: 10.1126/science.1123841. PubMed DOI

Liu X, Galli M, Camehl I, Gallavotti A. RAMOSA1 ENHANCER LOCUS2-mediated transcriptional repression regulates vegetative and reproductive architecture. Plant Physiol. 2019;179:348–363. doi: 10.1104/pp.18.00913. PubMed DOI PMC

Jiang L, et al. DWARF 53 acts as a repressor of strigolactone signalling in rice. Nature. 2013;504:401–405. doi: 10.1038/nature12870. PubMed DOI PMC

Tan L, et al. Control of a key transition from prostrate to erect growth in rice domestication. Nat. Genet. 2008;40:1360–1364. doi: 10.1038/ng.197. PubMed DOI

Jin J, et al. Genetic control of rice plant architecture under domestication. Nat. Genet. 2008;40:1365–1369. doi: 10.1038/ng.247. PubMed DOI

Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989;123:585–595. PubMed PMC

Chen H, Patterson N, Reich D. Population differentiation as a test for selective sweeps. Genome Res. 2010;20:393–402. doi: 10.1101/gr.100545.109. PubMed DOI PMC

Arite T, et al. d14, a Strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers. Plant Cell Physiol. 2009;50:1416–1424. doi: 10.1093/pcp/pcp091. PubMed DOI

Ishikawa S, et al. Suppression of tiller bud activity in tillering dwarf mutants of rice. Plant Cell Physiol. 2005;46:79–86. doi: 10.1093/pcp/pci022. PubMed DOI

Zhang BC, et al. A missense mutation in the transmembrane domain of CESA4 affects protein abundance in the plasma membrane and results in abnormal cell wall biosynthesis in rice. Plant Mol. Biol. 2009;71:509–524. doi: 10.1007/s11103-009-9536-4. PubMed DOI

Wang DF, et al. A missense mutation in the zinc finger domain of OsCESA7 deleteriously affects cellulose biosynthesis and plant growth in rice. PLoS One. 2016;11:e0153993. doi: 10.1371/journal.pone.0153993. PubMed DOI PMC

Wang DF, et al. A missense mutation in the transmembrane domain of CESA9 affects cell wall biosynthesis and plant growth in rice. Plant Sci. 2012;196:117–124. doi: 10.1016/j.plantsci.2012.08.002. PubMed DOI

Hanna HaS R. Yield of supper sweet corn as affected by N application timing, plant density, tiller removal, and insecticides. Proc. Fla. State Horticultural Soc. 1992;105:343–344.

Akman Z. Effect of tiller removing and plant density on ear yield of sweet corn (Zea mays saccharata Sturt) Pak. J. Biol. Sci. 2002;5:906–909. doi: 10.3923/pjbs.2002.906.908. DOI

Flint-Garcia SA, et al. Maize association population: a high-resolution platform for quantitative trait locus dissection. Plant J. 2005;44:1054–1064. doi: 10.1111/j.1365-313X.2005.02591.x. PubMed DOI

Broman KW, Wu H, Sen S, Churchill GA. R/qtl: QTL mapping in experimental crosses. Bioinformatics. 2003;19:889–890. doi: 10.1093/bioinformatics/btg112. PubMed DOI

Wang J, Zhang X, Lin ZW. QTL mapping in a maize F-2 population using genotyping-by-sequencing and a modified fine-mapping strategy. Plant Sci. 2018;276:171–180. doi: 10.1016/j.plantsci.2018.08.019. PubMed DOI

Vega JM, Yu WC, Kennon AR, Chen XL, Zhang ZYJ. Improvement of Agrobacterium-mediated transformation in Hi-II maize (Zea mays) using standard binary vectors. Plant Cell Rep. 2008;27:297–305. doi: 10.1007/s00299-007-0463-z. PubMed DOI

Bukowski R, et al. Construction of the third-generation Zea mays haplotype map. GigaScience. 2018;7:1–12. doi: 10.1093/gigascience/gix134. PubMed DOI PMC

Bradbury PJ, et al. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics. 2007;23:2633–2635. doi: 10.1093/bioinformatics/btm308. PubMed DOI

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI

Wei L, Zhang X, Zhang ZH, Liu HH, Lin ZW. A new allele of the Brachytic2 gene in maize can efficiently modify plant architecture. Heredity. 2018;121:75–86. doi: 10.1038/s41437-018-0056-3. PubMed DOI PMC

Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009;25:1451–1452. doi: 10.1093/bioinformatics/btp187. PubMed DOI

Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016;33:1870–1874. doi: 10.1093/molbev/msw054. PubMed DOI PMC

Chia JM, et al. Maize HapMap2 identifies extant variation from a genome in flux. Nat. Genet. 2012;44:803–807. doi: 10.1038/ng.2313. PubMed DOI

Hufford MB, et al. Comparative population genomics of maize domestication and improvement. Nat. Genet. 2012;44:808–811. doi: 10.1038/ng.2309. PubMed DOI PMC

Wang M, et al. Parallel selection on a dormancy gene during domestication of crops from multiple families. Nat. Genet. 2018;50:1435–1441. doi: 10.1038/s41588-018-0229-2. PubMed DOI

Danecek P, et al. The variant call format and VCFtools. Bioinformatics. 2011;27:2156–2158. doi: 10.1093/bioinformatics/btr330. PubMed DOI PMC

McMullen MD, et al. Genetic properties of the maize nested association mapping population. Science. 2009;325:737–740. doi: 10.1126/science.1174320. PubMed DOI

Wei LH, et al. The m(6)A reader ECT2 controls trichome morphology by affecting mRNA stability in Arabidopsis. Plant Cell. 2018;30:968–985. doi: 10.1105/tpc.17.00934. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

MADS-box encoding gene Tunicate1 positively controls maize yield by increasing leaf number above the ear

. 2024 Nov 12 ; 15 (1) : 9799. [epub] 20241112

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...