pH controls spermatozoa motility in the Pacific oyster (Crassostrea gigas)
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
29483075
PubMed Central
PMC5898264
DOI
10.1242/bio.031427
PII: bio.031427
Knihovny.cz E-zdroje
- Klíčová slova
- Ions, Motility, Salinity, Seminal fluid, Spermatozoa, pH,
- Publikační typ
- časopisecké články MeSH
Investigating the roles of chemical factors stimulating and inhibiting sperm motility is required to understand the mechanisms of spermatozoa movement. In this study, we described the composition of the seminal fluid (osmotic pressure, pH, and ions) and investigated the roles of these factors and salinity in initiating spermatozoa movement in the Pacific oyster, Crassostrea gigas The acidic pH of the gonad (5.82±0.22) maintained sperm in the quiescent stage and initiation of flagellar movement was triggered by a sudden increase of spermatozoa external pH (pHe) when released in seawater (SW). At pH 6.4, percentage of motile spermatozoa was three times higher when they were activated in SW containing 30 mM NH4Cl, which alkalinizes internal pH (pHi) of spermatozoa, compared to NH4Cl-free SW, revealing the role of pHi in triggering sperm movement. Percentage of motile spermatozoa activated in Na+-free artificial seawater (ASW) was highly reduced compared to ASW, suggesting that change of pHi triggering sperm motility was mediated by a Na+/H+ exchanger. Motility and swimming speed were highest in salinities between 33.8 and 42.7‰ (within a range of 0 to 50 ‰), and pH values above 7.5 (within a range of 4.5 to 9.5).
CNRS UMR 6539 Lemar IUEM Plouzané 29280 France
Ifremer LMEE Centre de Bretagne Plouzané 29280 France
Ifremer UMR 6539 Lemar Site expérimental d'Argenton Landunvez 29840 France
Zobrazit více v PubMed
Alavi S. M. H. and Cosson J. (2005). Sperm motility in fishes: (I) Effects of temperature and pH. Cell Biol. Int. 29, 101-110. 10.1016/j.cellbi.2004.11.021 PubMed DOI
Alavi S. M. H. and Cosson J. (2006). Sperm motility in fishes: (II) Effects of ions and osmolality. Cell Biol. Int. 30, 1-14. 10.1016/j.cellbi.2005.06.004 PubMed DOI
Alavi S. M. H., Matsumura N., Shiba K., Itoh N., Takahashi K. G., Inaba K. and Osada M. (2014). Roles of extracellular ions and pH in 5-HT induced sperm motility in marine bivalve. Reprod 147, 331-345. 10.1530/REP-13-0418 PubMed DOI
Billard R. (1983). Ultrastructure of trout spermatozoa: changes after dilution and deep freezing. Cell Tissue Res. 228, 205-218. 10.1007/BF00204873 PubMed DOI
Blaustein M. P. and Lederer W. J. (1999). Sodium/calcium exchange: its physiological implications. Physiol. Rev. 79, 763-854. 10.1152/physrev.1999.79.3.763 PubMed DOI
Boulais M., Soudant P., Le Goïc N., Quéré C., Boudry P. and Suquet M. (2015). Involvement of mitochondrial activity and OXPHOS in ATP synthesis during the motility phase of spermatozoa in the Pacific oyster, Crassostrea gigas. Biol. Reprod. 93, 1-7. 10.1095/biolreprod.115.128538 PubMed DOI
Caldeira K. and Wickett M. E. (2005). Ocean model predictions of chemistry change from carbon dioxide emissions to the atmosphere and ocean. J. Geophys. Res. 110, C09S04 10.1029/2004JC002671 DOI
Christen R., Schakmann R. W. and Shapiro B. M. (1982). Elevation of the intracellular pH activates respiration and motility of sperm of the sea urchin, Strongylocentrotus purpuratus. J. Biol. Chem. 257, 14881-14890. PubMed
Christen R., Schackmann R. W. and Shapiro B. M. (1983). Metabolism of sea urchin sperm. Interrelationships between intracellular pH, ATPase activity and mitochondrial respiration. J. Biol. Chem. 258, 5392-5399. PubMed
Christen R., Schackmann R. W. and Shapiro B. M. (1986). Ionic regulation of sea urchin sperm motility, metabolism and fertilizing capacity. J. Physiol. 379, 347-365. 10.1113/jphysiol.1986.sp016257 PubMed DOI PMC
Cosson J., Groison A. L., Suquet M., Fauvel C., Dreanno C. and Billard R. (2008). Studying sperm motility in marine fish: an overview on the state of the art. J. Appl. Ichthyol. 24, 460-486. 10.1111/j.1439-0426.2008.01151.x DOI
Darszon A., Labarca P., Nishigaki T. and Espinoza F. (1999). Calcium changes in the development, maturation and function of spermatozoa. Physiol. Rev. 79, 481-510. 10.1152/physrev.1999.79.2.481 PubMed DOI
Demoy-Schneider M., Levêque A., Schmitt N., Le Pennec M. and Cosson J. (2012). Motility activation and metabolism characteristics of spermatozoa of the black-lip-pearl oyster Pinctada margaritifera var: cumingii (Jameson 1901). Theriogenol. 77, 53-64. 10.1016/j.theriogenology.2011.07.014 PubMed DOI
Demoy-Schneider M., Schmitt N., Suquet M., Labbé C., Boulais M., Prokopchuk G. and Cosson J. (2014). Biological characteristics of sperm in two oyster species: the Pacific oyster, Crassostrea gigas, and the black lip pearl oyster, Pinctada margaritifera. In Spermatozoa: Biology, Motility and Function and Chromosomal Abnormalities (ed. Erickson B.T.), pp. 15-74. New York: Nova Biomedical.
Dong Q., Eudeline B., Allen S. K. A. Jr and Tiersch T. (2002). Factors affecting sperm motility of tetraploid Pacific oysters . J. Shellfish Res. 21, 719-723.
Eads A. R., Kennington W. J. and Evans J. P. (2016). Interactive effects of ocean warming and acidification on sperm motility and fertilization in the mussel Mytilus galloprovincialis. Mar. Ecol. Progr. Ser. 562, 101-111. 10.3354/meps11944 DOI
Fabioux C., Huvet A., Le Souchu P., Le Pennec M. and Pouvreau S. (2005). Temperature and photoperiod drive Crassostrea gigas reproductive internal clock. Aquaculture 250, 458-470. 10.1016/j.aquaculture.2005.02.038 DOI
Faure C., Devauchelle N. and Girard J. P. (1994). Ionic factors affecting motility, respiration and fertilization rate of the sperm of the bivalve Pecten maximus (L.). J. Comp. Physiol. 164B, 444-450. 10.1007/BF00714581 DOI
Gatti J. L. and Christen R. (1985). Regulation of internal pH of sea urchin sperm. J. Biol. Chem. 260, 7599-7602. PubMed
Gibbons B. H. and Gibbons I. R. (1972). Flagellar movement and adenosine triphosphatase activity in sea urchin sperm extracted with Triton X-100. J. Cell Biol. 54, 75-97. 10.1083/jcb.54.1.75 PubMed DOI PMC
Helm M. (2005). Cultured aquatic species information program-Crassostrea gigas. Cultured aquatic species fact sheets. FAO Inland Water Resourcesand Aquaculture Service. http://www.fao.org/fishery/culturedspecies/Crassostrea_gigas/en#tcNA0064.
Intergovernmental Panel on Climate Change (IPCC) (2013). Climate Change for 2013. The Physical Science Basis (2013). Cambridge: Cambridge University; http://www.climatechange2013.org/.
Johnson C. H., Clapper D. L., Winkler M. W., Lee H. C. and Epel D. (1983). A volatile inhibitor immobilizes sea urchin sperm in semen by depressing the intracellular pH. Dev. Biol. 98, 493-501. 10.1016/0012-1606(83)90378-0 PubMed DOI
Lazar C. S., Parkes R. J., Cragg B. A., L'Haridon S. and Toffin L. (2011). Methanogenic diversity and activity in hypersaline sediments of the centre of the Napoli mud volcano, Eastern Mediterranean Sea. Environ. Microbiol. 13, 2078-2091. 10.1111/j.1462-2920.2011.02425.x PubMed DOI
Lee H. C., Johnson C. and Epel D. (1983). Changes in internal pH associated with initiation of motility and acrosome reaction of sea urchin sperm. Dev. Biol. 95, 31-45. 10.1016/0012-1606(83)90004-0 PubMed DOI
Lovett D. L., Tanner C. A., Glomski K., Ricart T. M. and Borst D. W. (2006). The effect of seawater composition and osmolality on hemolymph levels of methyl farnesoate in the green crab Carcinus maenas. Comp. Biochem. Physiol. Part A 143, 67-77. 10.1016/j.cbpa.2005.10.025 PubMed DOI
Mohri H. and Yasumasu I. (1963). Studies on the respiration of sea-urchin spermatozoa. V. The effects of PCO2. J. Exp. Biol. 40, 573-586. PubMed
Morisawa M. (1985). Initiation mechanism of sperm motility at spawnig in teleosts. Zool. Sci. 2, 605-615.
Morisawa M. and Suzuki K. (1980). Osmolality and potassium ion: their roles in initiation of sperm motility in teleosts. Science 210, 1145-1147. 10.1126/science.7444445 PubMed DOI
Nakajima A., Morita M., Takemura A., Kamimura S. and Okuno M. (2005). Increase in intracellular pH induces phosphorylation of axonemal proteins for activation of flagellar motility in starfish sperm. J. Exp. Biol. 208, 4411-4418. 10.1242/jeb.01906 PubMed DOI
Ohta H., Kawamoto T., Isowa K., Aoki H., Hayashi M., Narita T. and Komaru A. (2007). Motility of spermatozoa obtained from testes of Japanese pearl oyster Pinctada fucata martensii. Fish. Sci. 73, 107-111. 10.1111/j.1444-2906.2007.01308.x PubMed DOI
Paniagua-Chavez C. G., Buchannan J. T. and Tiersch T. R. (1998). Effect of extender solutions and dilution on motility and fertilizing ability of Eastern oyster sperm. J. Shellfish Res. 17, 231-237.
Phelps H. and Warner K. A. (1990). Estuarine sediment bio-assay with oyster pedivelyger larvae (Crassostrea gigas). Bull. Environ. Contam. Toxicol. 44, 197-204. 10.1007/BF01700136 PubMed DOI
Piferrer F., Beaumont A., Falguiere J. C., Flajshans M., Haffray P. and Colombo L. (2009). Polyploid fish and shellfish: production, biology and applications to aquaculture for performance improvement and genetic containment. Aquaculture 293, 125-156. 10.1016/j.aquaculture.2009.04.036 DOI
Robert R. and Gérard A. (1999). Bivalve hatchery technology: the current situation for the Pacific oyster Crassostrea gigas and the scallop Pecten maximus in France. Aquat. Living Resour. 12, 121-130. 10.1016/S0990-7440(99)80021-7 DOI
Ross P. M., Parker L., O'Conner W. A. and Bailey E. A. (2011). The impact of Ocean Acidification on reproduction, Earlty Development and Settlement of Marine Organisms. Water 3, 1005-1030. 10.3390/w3041005 DOI
Rothschild L. (1928). The physiology of sea urchin spermatozoa. Senescence and the dilution effect. J. Exp. Biol. 25, 353-368. PubMed
Schackmann R. W., Christen R. and Shapiro B. M. (1981). Membrane potential depolarisation and increased intracellular pH accompany the acrosome reaction of sea urchin sperm. Proc. Natl. Acad. Sci. USA 78, 6066-6070. 10.1073/pnas.78.10.6066 PubMed DOI PMC
Schlegel P., Havenhand J. N., Gillings M. R. and Williamson J. E. (2012). Individual variability in reproductive success determines winners and losers under ocean acidification: a case study with sea urchin. PLoS ONE 7, e53118 10.1371/journal.pone.0053118 PubMed DOI PMC
Steele S. and Mulcahy M. (1999). Gametogenesis of the oyster Crassostrea gigas in southern Ireland. J. Mar. Biol. Assoc. UK 79, 676-686. 10.1017/S0025315498000836 DOI
Suquet M., Billard R., Cosson J., Dorange G., Chauvaud L., Mugnier C. and Fauvel C. (1994). Sperm features in turbot (Scophthalmus maximus): a comparison with other freshwater and marine fish species. Aquat. Living Resour. 7, 283-294. 10.1051/alr:1994031 DOI
Suquet M., Malo F., Quéau I., Ratiskol D., Quéré C., Le Grand J. and Fauvel C. (2016). Seasonal variation of sperm quality in Pacific oyster (Crassostrea gigas). Aquaculture 464, 638-641. 10.1016/j.aquaculture.2016.07.016 DOI
Vihtakari M., Hendriks I. E., Holding J., Renaud P. E., Duarte C. M. and Havenhand J. N. (2013). Effects of ocean acidification and warming on sperm activity and early life stages of the Meditteranean mussel (Mytilus galloprovincialis). Water 5, 1890-1915. 10.3390/w5041890 DOI
Wilson-Leedy J. G. and Ingermann R. L. (2007). Development of a novel CASA system baed on open source software for characterization of zebrafish sperm motility parameters. Theriogenol 67, 661-672. 10.1016/j.theriogenology.2006.10.003 PubMed DOI
Zhao X., Yu H., Kong L. and Li Q. (2012). Transcriptomic responses to salinity stress in the Pacific oyster Crassostrea gigas. PLoS ONE 7, e46244 10.1371/journal.pone.0046244 PubMed DOI PMC