Fluid Metabolism in Athletes Running Seven Marathons in Seven Consecutive Days

. 2018 ; 9 () : 91. [epub] 20180212

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29483882

Purpose: Hypohydration and hyperhydration are significant disorders of fluid metabolism in endurance performance; however, little relevant data exist regarding multi-stage endurance activities. The aim of the present study was to examine the effect of running seven marathons in 7 consecutive days on selected anthropometric, hematological and biochemical characteristics with an emphasis on hydration status. Methods: Participants included 6 women and 20 men (age 42.6 ± 6.2 years). Data was collected before day 1 (B1) and after day 1 (A1), 4 (A4), and 7 (A7). Results: The average marathon race time was 4:44 h:min (ranging from 3:09 - 6:19 h:min). Plasma sodium, plasma potassium and urine sodium were maintained during the race. Body mass (p < 0.001, η2 = 0.501), body fat (p < 0.001, η2 = 0.572) and hematocrit (p < 0.001, η2 = 0.358) decreased. Plasma osmolality (Posm) (p < 0.001, η2 = 0.416), urine osmolality (Uosm) (p < 0.001, η2 = 0.465), urine potassium (p < 0.001, η2 = 0.507), urine specific gravity (Usg) (p < 0.001, η2 = 0.540), plasma urea (PUN) (p < 0.001, η2 = 0.586), urine urea (UUN) (p < 0.001, η2 = 0.532) and transtubular potassium gradient (p < 0.001, η2 = 0.560) increased at A1, A4, and A7 vs. B1. Posm correlated with PUN at A1 (r = 0.59, p = 0.001) and A4 (r = 0.58, p = 0.002). The reported post-race fluid intake was 0.5 ± 0.2 L/h and it correlated negatively with plasma [Na+] (r = -0.42, p = 0.007) at A4 and (r = -0.50, p = 0.009) at A7. Uosm was associated with UUN at A1 (r = 0.80, p < 0.001), at A4 (r = 0.81, p < 0.001) and at A7 (r = 0.86, p < 0.001) and with Usg (r = 0.71, p < 0.001) at A1, (r = 0.52, p = 0.006) at A4 and (r = 0.46, p = 0.02) at A7. Conclusions: Despite the decrease in body mass, fluid and electrolyte balance was maintained with no decrease in plasma volume after running seven marathons in seven consecutive days. Current findings support the hypothesis that body mass changes do not reflect changes in the hydration status during prolonged exercise.

Zobrazit více v PubMed

American College of Sports Medicine. Sawka M. N., Burke L. M., Eichner E. R., Maughan R. J., Montain S. J., et al. . (2007). American college of sports medicine position stand. exercise and fluid replacement. Med. Sci. Sports Exerc. 39, 377–390. 10.1249/mss.0b013e31802ca597 PubMed DOI

Armstrong L. E. (2007). Assesing hydration status: the elusive gold standard. J. Am. Coll. Nutr. 26, 575S−584S. PubMed

Armstrong L. E., Soto J. A. H., Hacker F. T., Casa D. J., Kavouras S. A., Maresh C. M. (1998). Urinary indices during dehydration, exercise and rehydration. Int. J. Sport Nutr. 8, 345–355. 10.1123/ijsn.8.4.345 PubMed DOI

Batterham A. M., Hopkins W. G. (2006). Making meaningful inferences about magnitudes. Int. J. Sports Physiol. Perform. 1, 50–57. 10.1123/ijspp.1.1.50 PubMed DOI

Ball S. D., Altena T. S., Stan P. D. (2004a). Comparison of anthropometry to DXA: a new prediction equation for men. Eur. J. Clin. Nutr. 58, 1525–1531. 10.1038/sj.ejcn.1602003 PubMed DOI

Ball S. D., Stan P., Desimone R. (2004b). Accuracy of anthropometry compared to dual energy X-ray absorptiometry. A new generalizable equation for women. Res. Q. Exerc. Sport 75, 248–258. 10.1080/02701367.2004.10609158 PubMed DOI

Bircher S., Enggist A., Jehle T., Knechtle B. (2006). Effects of an extreme endurance race on energy balance and body composition – a case study. J. Sports Sci. Med. 5, 154–162. PubMed PMC

Cheuvront S. N., Kenefick R. W., Charkoudian N., Sawka M. N. (2013). Physiologic basis for understanding quantitative dehydration. Am. J. Clin. Nutr. 97, 455–462. 10.3945/ajcn.112.044172 PubMed DOI

Choi M. J., Ziyadehm F. N. (2008). The utility of the transtubular potassium gradient in the evaluation of hyperkalemia. J. Am. Soc. Nephro. 19, 424–426. 10.1681/ASN.2007091017 PubMed DOI

Costa R. J. S., Teixera A., Rama L., Swancott A. J. M., Hardy L. D., Lee B., et al. (2013). Water and sodium intake habits and status of ultra-endurance runners during a multistage ultra-marathon conducted in a hot ambient environment: an observational field based study. Nutr. J. 12, 1–16. 10.1186/1475-2891-12-13 PubMed DOI PMC

Dressendorfer R. H., Wade C. E. (1991). Effects of a 15-d race on plasma steroid levels and leg muscle fitness in runners. Med. Sci. Sports Exerc. 23, 954–958. 10.1249/00005768-199108000-00012 PubMed DOI

Fellmann N., Ritz P., Ribeyre J., Beaufrère B., Delaître M., Coudert J. (1999). Intracellular hyperhydration induced by a 7-day endurance race. Eur. J. Appl. Physiol. Occup. Physiol. 80, 353–359. 10.1007/s004210050603 PubMed DOI

Fischback F. T., Dunning M. B. (2004). A Manual of Laboratory and Diagnostic Tests 7th edn. Philadelphia, PA: Lipincott Williams and Wilkins

Gault M. H., Longerich L. L., Harnett J. D., Weslowski C. (1992). Predicting glomerular function from adjusted serum creatinine. Nephron 62, 249–256. PubMed

Helge J. W., Lundy C., Christensen D. L., Langfort J., Messonnier L., Zacho M., et al. (2003). Skiing across the greenland icecap: divergent effect on limb muscle adaptations and substrate oxidation. J. Exp. Biol. 206, 1075–1083. 10.1242/jeb.00218 PubMed DOI

Hew-Butler T., Rosner M. H., Fowkes-Godek S., Dugas J. P., Hoffman M. D., Lewis D. P., et al. . (2015). Statement of the third international exercise-associated hyponatremia consensus development conference, carlsbad, California. Clin. J. Sport Med. 25, 303–320. 10.1097/JSM.0000000000000221 PubMed DOI

Hoffman M. D., Goulet E. D. B., Maughan R. J. (2017). Considerations in the use of body mass change to estimate change in hydration status during a 161-kilometer ultramarathon running competition. Sports Med. 48, 243–250. 10.1007/s40279-017-0782-3 PubMed DOI

Hoffman M. D., Hew-Butler T., Stuempfle K. J. (2013b). Exercise-associated hyponatremia and hydration status in 161-km ultramarathoners. Med. Sci. Sports Exerc. 45, 784–791. 10.1249/MSS.0b013e31827985a8 PubMed DOI

Hoffman M. D., Stuempfle K. J. (2014). Hydration strategies, weight change and performance in a 161 km ultramarathon. Res. Sports Med. 22, 213–225. 10.1080/15438627.2014.915838 PubMed DOI

Hoffman M. D., Stuempfle K. J. (2016). Is sodium supplementation necessary to avoid dehydration during prolonged exercise in the heat? J. Strength Cond. Res, 30, 615–620. 10.1519/JSC.0000000000001138 PubMed DOI

Hoffman M. D., Stuempfle K. J., Fogard K., Hew-Butler T., Winger J., Weiss R. H. (2013a). Urine dipstick analysis for identification of runners susceptible to acute kidney injury following an ultramarathon. J. Sports Sci. 31, 20–31. 10.1080/02640414.2012.720705 PubMed DOI

Hoffman M. D., Weiss R. H. (2016). Does acute kidney injury from an ultramarathon increase the risk for greater subsequent injury? Clin. J. Sport Med. 26, 417–422. 10.1097/JSM.0000000000000277 PubMed DOI PMC

Hue O., Henri S., Baillot M., Sinnapah S., Uzel A. P. (2014). Thermoregulation, hydration and performance over 6 days of trail running in the tropics. Int. J. Sports Med, 35, 906–911. 10.1055/s-0033-1361186 PubMed DOI

Imeri F., Herklotz R., Risch L., Arbetsleitner C., Zerlauth M., Risch G. M., et al. . (2008). Stability of hematological analytes depends on the hematology analyser used: a stability study with Bayer Advia 120, Beckman Coulter LH 750 and Sysmex XE 2100. Clin. Chim. Acta. 397, 68–71. 10.1016/j.cca.2008.07.018 PubMed DOI

Kavouras S. A. (2002). Assessing hydration status. Curr. Opin. Clin. Nutr. Metab. Care. 5, 519–524. 10.1097/00075197-200209000-00010 PubMed DOI

Knechtle B., Duff B., Schulze I., Kohler G. (2008c). A multi-stage ultra-endurance run over 1,200 km leads to a continuous accumulation of total body water. J. Sports Sci. Med, 1, 357–364. PubMed PMC

Knechtle B., Enggist A., Jehle T. (2005). Energy turnover at the Race Across America (RAAM) – a case report. Int. J. Sports Med. 26, 499–503. 10.1055/s-2004-821136 PubMed DOI

Knechtle B., Gnädinger M., Knechtle P., Imoberdorf R., Kohler G., Ballmer P., et al. . (2011). Prevalence of exercise-associated hyponatremia in male ultraendurance athletes. Clin. J. Sport Med, 21, 226–232. 10.1097/JSM.0b013e31820cb021 PubMed DOI

Knechtle B., Kiouplidis K., Knechtle P., Imoberdorf R., Ballmer P. (2010a). Does a multi-stage ultra-endurance run cause de- or hyperhydration? J. Hum. Sport Exerc. 5, 59–70. 10.4100/jhse.2010.51.07 DOI

Knechtle B., Knechtle P., Rosemann T., Oliver S. (2010b). A triple iron triathlon leads to a decrease in total body mass but not to dehydration. Res. Q. Exerc. Sport 81, 319–327. 10.1080/02701367.2010.10599680 PubMed DOI

Knechtle B., Knechtle P., Rüst C. A., Gnädinger M., Imoberdorf R., Kohler G., et al. . (2012a). Regulation of electrolyte and fluid metabolism in multi-stage ultra-marathoners. Horm. Metab. Res. 44, 919–926. 10.1055/s-0032-1312647 PubMed DOI

Knechtle B., Knechtle P., Schück R., Andonie J. L., Kohler G. (2008b). Effects of a deca iron triathlon on body composition: a case study. Int. J. Sports Med. 29, 343–351. 10.1055/s-2007-965354 PubMed DOI

Knechtle B., Kohler G. (2007). Running 338 kilometres within five days has no effect on body mass and body fat but reduces skeletal muscle mass – the Isarrun 2006. J. Sports Sci. Med. 6, 401–407. PubMed PMC

Knechtle B., Morales N. P. H., Gonzáles E. R., Gutierrez A. A. A., Sevilla J. N., Gómez R. A., et al. (2012b). Effects of a multistage ultraendurance triathlon on aldosterone, vasopressin, extracellular water and urine electrolytes. Scott. Med. J. 57, 26–32. 10.1258/smj.2011.011287 PubMed DOI

Knechtle B., Salas Fraire O., Andonie J. L., Kohler G. (2008a). Effect of a multistage ultra-endurance triathlon on body composition: World Challenge Deca Iron Triathlon 2006. Br. J. Sports Med. 42, 121–125. 10.1136/bjsm.2007.038034 PubMed DOI

Knechtle B., Zingg M. A., Knechtle P., Rosemann T., Rüst C. A. (2015). Feet swelling in a multistage ultraendurance triathlete: a case study. Int. J. Gen. Med, 8, 325–332. 10.2147/IJGM.S94542 PubMed DOI PMC

Krabak B. J., Lipman G. S., Waite B. L., Rundell S. D. (2017). Exercise-associated hyponatremia, hypernatremia, and hydration status in multistage ultramarathons. Wilderness Environ. Med. 28, 291–298. 10.1016/j.wem.2017.05.008 PubMed DOI

Kratz A., Lewandrowski K. B., Siegel A. J., Chun K. Y., Flood J. G., Van Cott E. M., Lee-Lewandrowski (2002). Effect of marathon running on hematologic and biochemical laboratory parameters, including cardiac markers. Am. J. Clin. Pathol. 118, 856–863. 10.1309/14TY-2TDJ-1X0Y-1V6V PubMed DOI

Maughan R. J., Shirreffs S. M., Leiper J. B. (2007). Errors in the estimation of hydration status from changes in body mass. J. Sports Sci, 25, 797–804. 10.1080/02640410600875143 PubMed DOI

McDermott B. P., Anderson S. A., Armstrong L. E., Casa D. J., Cheuvront S. N., Cooper L., et al. . (2017). National athletic trainers' asscociation position statement: fluid replacement for the physically active. J. Athletic Train. 52, 877–895. 10.4085/1062-6050-52.9.02 PubMed DOI PMC

McManus C. J., Murray K. A., Parry D. A. (2017). Applied sports nutrition support, dietary intake and body composition changes of a female athlete completing 26 Marathons in 26 Days. A Case Study. J. Sports Sci. Med. 16, 112–116. PubMed PMC

Millet G. P., Millet G. Y. (2012). Ultramarathon is an outstanding model for the study of adaptive responses to extreme load and stress. BMC Med. 10:77. 10.1186/1741-7015-10-77 PubMed DOI PMC

Noakes T. D. (2012). Waterlogged. The Serious Problem of Overhydration in Endurance Sports. Leeds: Human Kinetics.

Noakes T. D., Carter J. W. (1976). Biochemical parameters in athletes before and after having run 160 kilometres. S. Afr. Med. J. 50, 1562–1566. PubMed

Noakes T. D., Sharwood K., Speedy D., Hew T., Reid S., Dugas J., et al. . (2005). Three independent biological mechanisms cause exercise-associated hyponatremia: evidence from 2,135 weighed competitive athletic performances. Proc. Natl. Acad. Sci. U.S.A. 102, 18550–18555. 10.1073/pnas.0509096102 PubMed DOI PMC

Pastene J., German M., Allevard A. M., Gharib C., Lacour J. R. (1996). Water balance during and after marathon running. Eur. J. Appl. Physiol. 73, 49–55. 10.1007/BF00262808 PubMed DOI

Rama L. M., Minuzzi L. G., Carvalho H. M., Costa R. J. S., Teixeira A. M. (2016). Changes of hematological markers during a multistage ultra-marathon competition in the heat. Int. J. Sports Med. 37, 104–111. 10.1055/s-0035-1555929 PubMed DOI

Rama R., Ibáñez J., Riera M., Prats M. T., Pagés T., Palacios L. (1994). Hematological, electrolyte, and biochemical alterations after a 100-km run. Can. J. Appl. Physiol. 19, 411–420. 10.1139/h94-033 PubMed DOI

Raschka C., Plath M. (1992). Body fat compartment and its relationship to food intake and clinical chemical parameters during extreme endurance performance. Schweiz. Z. Sportmed. 40, 13–25. PubMed

Rüst C. H., Knechtle B., Knechtle P., Rosemann T. (2012). Higher prevalence of exercise-associated hyponatremia in triple iron ultra-triathletes than reported for ironman triathletes. Chin. J. Physiol. 55, 147–155. 10.4077/CJP.2012.BAA010 PubMed DOI

Stewart A. D., Hannan W. J. (2000). Prediction of fat and fat-free mass in male athletes using dual X-ray absorptiometry as the reference method. J. Sports Sci. 18, 263–274. 10.1080/026404100365009 PubMed DOI

Stockmann W., Engeldinger W., Kunst A., McGovern M. (2008). An innovative approach to functionality testing of analysers in the clinical laboratory. J. Autom. Methods Manag. Chem. 2008:183747. 10.1155/2008/183747 PubMed DOI PMC

Stuempfle K. J., Hoffman M. D., Weschler L. B., Rogers I. R., Hew-Butler T. (2011). Race diet of finishers and non-finishers in a 100-mile (161 km) mountain footrace. J. Am. Coll. Nutr, 30, 529–535. 10.1080/07315724.2011.10719999 PubMed DOI

Tam N., Nolte H. W., Noakes T. D. (2011). Changes in total body water content during running races of 21.1 km and 56 km in athletes drinking ad libitum. Clin. J. Sport Med. 21, 218–225. 10.1097/JSM.0b013e31820eb8d7 PubMed DOI

Van Beaumont W. (1972). Evaluation of hemoconcentration from hematocrit measurements. J. Appl. Physiol. 32, 712–713. 10.1152/jappl.1972.32.5.712 PubMed DOI

Wade C. E., Dressendorfer R. H., O'Brien J. C., Claybaugh J. R. (1981). Renal function, aldosterone, and vasopressin excretion following repeated long-distance running. J. Appl. Physiol. 50, 709–712. 10.1152/jappl.1981.50.4.709 PubMed DOI

Warburton D. E., Welsh R. C., Haykowsky M. J., Taylor D. A., Humen D. P. (2002). Biochemical changes as a result of prolonged strenuous exercise. Br. J. Sports Med. 36, 301–303. 10.1136/bjsm.36.4.301 PubMed DOI PMC

Warner E. R., Fornetti W. C., Jallo J. J., Pivarnik J. M. (2004). A skinfold model to predict fat-free mass in female athletes. J. Athl. Train. 39, 259–262. PubMed PMC

West M. L., Marsden P. A., Richardson R. M., Zettle R. M., Halperin M. L. (1986). New clinical approach to evaluate disorders of potassium excretion. Miner. Electrolyte Metab. 12, 234–238. PubMed

Zanchi D., Viallon M., Le Goff C., Millet G. P., Giardini G., Croisille P., et al. . (2016). Extreme mountain ultra-marathon leads to acute but transient increase in cerebral water diffusivity and plasma biomarkers levels changes. Front. Physiol. 7:664. 10.3389/fphys.2016.00664 PubMed DOI PMC

Zouhal H., Groussard C., Vincent S., Jacob C., Abderrahman A. B., Delamarche P., et al. (2009). Athletic performance and weight changes during the “Marathon of Sands” in athletes well-trained in endurance. Int. J. Sports Med. 30, 516–521. 10.1055/s-0029-1202350 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...