Fluid Metabolism in Athletes Running Seven Marathons in Seven Consecutive Days
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
29483882
PubMed Central
PMC5816349
DOI
10.3389/fphys.2018.00091
Knihovny.cz E-zdroje
- Klíčová slova
- endurance, hydration status, multi-stage marathon, running, sodium,
- Publikační typ
- časopisecké články MeSH
Purpose: Hypohydration and hyperhydration are significant disorders of fluid metabolism in endurance performance; however, little relevant data exist regarding multi-stage endurance activities. The aim of the present study was to examine the effect of running seven marathons in 7 consecutive days on selected anthropometric, hematological and biochemical characteristics with an emphasis on hydration status. Methods: Participants included 6 women and 20 men (age 42.6 ± 6.2 years). Data was collected before day 1 (B1) and after day 1 (A1), 4 (A4), and 7 (A7). Results: The average marathon race time was 4:44 h:min (ranging from 3:09 - 6:19 h:min). Plasma sodium, plasma potassium and urine sodium were maintained during the race. Body mass (p < 0.001, η2 = 0.501), body fat (p < 0.001, η2 = 0.572) and hematocrit (p < 0.001, η2 = 0.358) decreased. Plasma osmolality (Posm) (p < 0.001, η2 = 0.416), urine osmolality (Uosm) (p < 0.001, η2 = 0.465), urine potassium (p < 0.001, η2 = 0.507), urine specific gravity (Usg) (p < 0.001, η2 = 0.540), plasma urea (PUN) (p < 0.001, η2 = 0.586), urine urea (UUN) (p < 0.001, η2 = 0.532) and transtubular potassium gradient (p < 0.001, η2 = 0.560) increased at A1, A4, and A7 vs. B1. Posm correlated with PUN at A1 (r = 0.59, p = 0.001) and A4 (r = 0.58, p = 0.002). The reported post-race fluid intake was 0.5 ± 0.2 L/h and it correlated negatively with plasma [Na+] (r = -0.42, p = 0.007) at A4 and (r = -0.50, p = 0.009) at A7. Uosm was associated with UUN at A1 (r = 0.80, p < 0.001), at A4 (r = 0.81, p < 0.001) and at A7 (r = 0.86, p < 0.001) and with Usg (r = 0.71, p < 0.001) at A1, (r = 0.52, p = 0.006) at A4 and (r = 0.46, p = 0.02) at A7. Conclusions: Despite the decrease in body mass, fluid and electrolyte balance was maintained with no decrease in plasma volume after running seven marathons in seven consecutive days. Current findings support the hypothesis that body mass changes do not reflect changes in the hydration status during prolonged exercise.
Centre of Sports Activities Brno University of Technology Brno Czechia
Exercise Physiology Laboratory Nikaia Greece
Faculty of Mechanical Engineering Brno University of Technology Brno Czechia
Institute of Primary Care University of Zurich Zurich Switzerland
Zobrazit více v PubMed
American College of Sports Medicine. Sawka M. N., Burke L. M., Eichner E. R., Maughan R. J., Montain S. J., et al. . (2007). American college of sports medicine position stand. exercise and fluid replacement. Med. Sci. Sports Exerc. 39, 377–390. 10.1249/mss.0b013e31802ca597 PubMed DOI
Armstrong L. E. (2007). Assesing hydration status: the elusive gold standard. J. Am. Coll. Nutr. 26, 575S−584S. PubMed
Armstrong L. E., Soto J. A. H., Hacker F. T., Casa D. J., Kavouras S. A., Maresh C. M. (1998). Urinary indices during dehydration, exercise and rehydration. Int. J. Sport Nutr. 8, 345–355. 10.1123/ijsn.8.4.345 PubMed DOI
Batterham A. M., Hopkins W. G. (2006). Making meaningful inferences about magnitudes. Int. J. Sports Physiol. Perform. 1, 50–57. 10.1123/ijspp.1.1.50 PubMed DOI
Ball S. D., Altena T. S., Stan P. D. (2004a). Comparison of anthropometry to DXA: a new prediction equation for men. Eur. J. Clin. Nutr. 58, 1525–1531. 10.1038/sj.ejcn.1602003 PubMed DOI
Ball S. D., Stan P., Desimone R. (2004b). Accuracy of anthropometry compared to dual energy X-ray absorptiometry. A new generalizable equation for women. Res. Q. Exerc. Sport 75, 248–258. 10.1080/02701367.2004.10609158 PubMed DOI
Bircher S., Enggist A., Jehle T., Knechtle B. (2006). Effects of an extreme endurance race on energy balance and body composition – a case study. J. Sports Sci. Med. 5, 154–162. PubMed PMC
Cheuvront S. N., Kenefick R. W., Charkoudian N., Sawka M. N. (2013). Physiologic basis for understanding quantitative dehydration. Am. J. Clin. Nutr. 97, 455–462. 10.3945/ajcn.112.044172 PubMed DOI
Choi M. J., Ziyadehm F. N. (2008). The utility of the transtubular potassium gradient in the evaluation of hyperkalemia. J. Am. Soc. Nephro. 19, 424–426. 10.1681/ASN.2007091017 PubMed DOI
Costa R. J. S., Teixera A., Rama L., Swancott A. J. M., Hardy L. D., Lee B., et al. (2013). Water and sodium intake habits and status of ultra-endurance runners during a multistage ultra-marathon conducted in a hot ambient environment: an observational field based study. Nutr. J. 12, 1–16. 10.1186/1475-2891-12-13 PubMed DOI PMC
Dressendorfer R. H., Wade C. E. (1991). Effects of a 15-d race on plasma steroid levels and leg muscle fitness in runners. Med. Sci. Sports Exerc. 23, 954–958. 10.1249/00005768-199108000-00012 PubMed DOI
Fellmann N., Ritz P., Ribeyre J., Beaufrère B., Delaître M., Coudert J. (1999). Intracellular hyperhydration induced by a 7-day endurance race. Eur. J. Appl. Physiol. Occup. Physiol. 80, 353–359. 10.1007/s004210050603 PubMed DOI
Fischback F. T., Dunning M. B. (2004). A Manual of Laboratory and Diagnostic Tests 7th edn. Philadelphia, PA: Lipincott Williams and Wilkins
Gault M. H., Longerich L. L., Harnett J. D., Weslowski C. (1992). Predicting glomerular function from adjusted serum creatinine. Nephron 62, 249–256. PubMed
Helge J. W., Lundy C., Christensen D. L., Langfort J., Messonnier L., Zacho M., et al. (2003). Skiing across the greenland icecap: divergent effect on limb muscle adaptations and substrate oxidation. J. Exp. Biol. 206, 1075–1083. 10.1242/jeb.00218 PubMed DOI
Hew-Butler T., Rosner M. H., Fowkes-Godek S., Dugas J. P., Hoffman M. D., Lewis D. P., et al. . (2015). Statement of the third international exercise-associated hyponatremia consensus development conference, carlsbad, California. Clin. J. Sport Med. 25, 303–320. 10.1097/JSM.0000000000000221 PubMed DOI
Hoffman M. D., Goulet E. D. B., Maughan R. J. (2017). Considerations in the use of body mass change to estimate change in hydration status during a 161-kilometer ultramarathon running competition. Sports Med. 48, 243–250. 10.1007/s40279-017-0782-3 PubMed DOI
Hoffman M. D., Hew-Butler T., Stuempfle K. J. (2013b). Exercise-associated hyponatremia and hydration status in 161-km ultramarathoners. Med. Sci. Sports Exerc. 45, 784–791. 10.1249/MSS.0b013e31827985a8 PubMed DOI
Hoffman M. D., Stuempfle K. J. (2014). Hydration strategies, weight change and performance in a 161 km ultramarathon. Res. Sports Med. 22, 213–225. 10.1080/15438627.2014.915838 PubMed DOI
Hoffman M. D., Stuempfle K. J. (2016). Is sodium supplementation necessary to avoid dehydration during prolonged exercise in the heat? J. Strength Cond. Res, 30, 615–620. 10.1519/JSC.0000000000001138 PubMed DOI
Hoffman M. D., Stuempfle K. J., Fogard K., Hew-Butler T., Winger J., Weiss R. H. (2013a). Urine dipstick analysis for identification of runners susceptible to acute kidney injury following an ultramarathon. J. Sports Sci. 31, 20–31. 10.1080/02640414.2012.720705 PubMed DOI
Hoffman M. D., Weiss R. H. (2016). Does acute kidney injury from an ultramarathon increase the risk for greater subsequent injury? Clin. J. Sport Med. 26, 417–422. 10.1097/JSM.0000000000000277 PubMed DOI PMC
Hue O., Henri S., Baillot M., Sinnapah S., Uzel A. P. (2014). Thermoregulation, hydration and performance over 6 days of trail running in the tropics. Int. J. Sports Med, 35, 906–911. 10.1055/s-0033-1361186 PubMed DOI
Imeri F., Herklotz R., Risch L., Arbetsleitner C., Zerlauth M., Risch G. M., et al. . (2008). Stability of hematological analytes depends on the hematology analyser used: a stability study with Bayer Advia 120, Beckman Coulter LH 750 and Sysmex XE 2100. Clin. Chim. Acta. 397, 68–71. 10.1016/j.cca.2008.07.018 PubMed DOI
Kavouras S. A. (2002). Assessing hydration status. Curr. Opin. Clin. Nutr. Metab. Care. 5, 519–524. 10.1097/00075197-200209000-00010 PubMed DOI
Knechtle B., Duff B., Schulze I., Kohler G. (2008c). A multi-stage ultra-endurance run over 1,200 km leads to a continuous accumulation of total body water. J. Sports Sci. Med, 1, 357–364. PubMed PMC
Knechtle B., Enggist A., Jehle T. (2005). Energy turnover at the Race Across America (RAAM) – a case report. Int. J. Sports Med. 26, 499–503. 10.1055/s-2004-821136 PubMed DOI
Knechtle B., Gnädinger M., Knechtle P., Imoberdorf R., Kohler G., Ballmer P., et al. . (2011). Prevalence of exercise-associated hyponatremia in male ultraendurance athletes. Clin. J. Sport Med, 21, 226–232. 10.1097/JSM.0b013e31820cb021 PubMed DOI
Knechtle B., Kiouplidis K., Knechtle P., Imoberdorf R., Ballmer P. (2010a). Does a multi-stage ultra-endurance run cause de- or hyperhydration? J. Hum. Sport Exerc. 5, 59–70. 10.4100/jhse.2010.51.07 DOI
Knechtle B., Knechtle P., Rosemann T., Oliver S. (2010b). A triple iron triathlon leads to a decrease in total body mass but not to dehydration. Res. Q. Exerc. Sport 81, 319–327. 10.1080/02701367.2010.10599680 PubMed DOI
Knechtle B., Knechtle P., Rüst C. A., Gnädinger M., Imoberdorf R., Kohler G., et al. . (2012a). Regulation of electrolyte and fluid metabolism in multi-stage ultra-marathoners. Horm. Metab. Res. 44, 919–926. 10.1055/s-0032-1312647 PubMed DOI
Knechtle B., Knechtle P., Schück R., Andonie J. L., Kohler G. (2008b). Effects of a deca iron triathlon on body composition: a case study. Int. J. Sports Med. 29, 343–351. 10.1055/s-2007-965354 PubMed DOI
Knechtle B., Kohler G. (2007). Running 338 kilometres within five days has no effect on body mass and body fat but reduces skeletal muscle mass – the Isarrun 2006. J. Sports Sci. Med. 6, 401–407. PubMed PMC
Knechtle B., Morales N. P. H., Gonzáles E. R., Gutierrez A. A. A., Sevilla J. N., Gómez R. A., et al. (2012b). Effects of a multistage ultraendurance triathlon on aldosterone, vasopressin, extracellular water and urine electrolytes. Scott. Med. J. 57, 26–32. 10.1258/smj.2011.011287 PubMed DOI
Knechtle B., Salas Fraire O., Andonie J. L., Kohler G. (2008a). Effect of a multistage ultra-endurance triathlon on body composition: World Challenge Deca Iron Triathlon 2006. Br. J. Sports Med. 42, 121–125. 10.1136/bjsm.2007.038034 PubMed DOI
Knechtle B., Zingg M. A., Knechtle P., Rosemann T., Rüst C. A. (2015). Feet swelling in a multistage ultraendurance triathlete: a case study. Int. J. Gen. Med, 8, 325–332. 10.2147/IJGM.S94542 PubMed DOI PMC
Krabak B. J., Lipman G. S., Waite B. L., Rundell S. D. (2017). Exercise-associated hyponatremia, hypernatremia, and hydration status in multistage ultramarathons. Wilderness Environ. Med. 28, 291–298. 10.1016/j.wem.2017.05.008 PubMed DOI
Kratz A., Lewandrowski K. B., Siegel A. J., Chun K. Y., Flood J. G., Van Cott E. M., Lee-Lewandrowski (2002). Effect of marathon running on hematologic and biochemical laboratory parameters, including cardiac markers. Am. J. Clin. Pathol. 118, 856–863. 10.1309/14TY-2TDJ-1X0Y-1V6V PubMed DOI
Maughan R. J., Shirreffs S. M., Leiper J. B. (2007). Errors in the estimation of hydration status from changes in body mass. J. Sports Sci, 25, 797–804. 10.1080/02640410600875143 PubMed DOI
McDermott B. P., Anderson S. A., Armstrong L. E., Casa D. J., Cheuvront S. N., Cooper L., et al. . (2017). National athletic trainers' asscociation position statement: fluid replacement for the physically active. J. Athletic Train. 52, 877–895. 10.4085/1062-6050-52.9.02 PubMed DOI PMC
McManus C. J., Murray K. A., Parry D. A. (2017). Applied sports nutrition support, dietary intake and body composition changes of a female athlete completing 26 Marathons in 26 Days. A Case Study. J. Sports Sci. Med. 16, 112–116. PubMed PMC
Millet G. P., Millet G. Y. (2012). Ultramarathon is an outstanding model for the study of adaptive responses to extreme load and stress. BMC Med. 10:77. 10.1186/1741-7015-10-77 PubMed DOI PMC
Noakes T. D. (2012). Waterlogged. The Serious Problem of Overhydration in Endurance Sports. Leeds: Human Kinetics.
Noakes T. D., Carter J. W. (1976). Biochemical parameters in athletes before and after having run 160 kilometres. S. Afr. Med. J. 50, 1562–1566. PubMed
Noakes T. D., Sharwood K., Speedy D., Hew T., Reid S., Dugas J., et al. . (2005). Three independent biological mechanisms cause exercise-associated hyponatremia: evidence from 2,135 weighed competitive athletic performances. Proc. Natl. Acad. Sci. U.S.A. 102, 18550–18555. 10.1073/pnas.0509096102 PubMed DOI PMC
Pastene J., German M., Allevard A. M., Gharib C., Lacour J. R. (1996). Water balance during and after marathon running. Eur. J. Appl. Physiol. 73, 49–55. 10.1007/BF00262808 PubMed DOI
Rama L. M., Minuzzi L. G., Carvalho H. M., Costa R. J. S., Teixeira A. M. (2016). Changes of hematological markers during a multistage ultra-marathon competition in the heat. Int. J. Sports Med. 37, 104–111. 10.1055/s-0035-1555929 PubMed DOI
Rama R., Ibáñez J., Riera M., Prats M. T., Pagés T., Palacios L. (1994). Hematological, electrolyte, and biochemical alterations after a 100-km run. Can. J. Appl. Physiol. 19, 411–420. 10.1139/h94-033 PubMed DOI
Raschka C., Plath M. (1992). Body fat compartment and its relationship to food intake and clinical chemical parameters during extreme endurance performance. Schweiz. Z. Sportmed. 40, 13–25. PubMed
Rüst C. H., Knechtle B., Knechtle P., Rosemann T. (2012). Higher prevalence of exercise-associated hyponatremia in triple iron ultra-triathletes than reported for ironman triathletes. Chin. J. Physiol. 55, 147–155. 10.4077/CJP.2012.BAA010 PubMed DOI
Stewart A. D., Hannan W. J. (2000). Prediction of fat and fat-free mass in male athletes using dual X-ray absorptiometry as the reference method. J. Sports Sci. 18, 263–274. 10.1080/026404100365009 PubMed DOI
Stockmann W., Engeldinger W., Kunst A., McGovern M. (2008). An innovative approach to functionality testing of analysers in the clinical laboratory. J. Autom. Methods Manag. Chem. 2008:183747. 10.1155/2008/183747 PubMed DOI PMC
Stuempfle K. J., Hoffman M. D., Weschler L. B., Rogers I. R., Hew-Butler T. (2011). Race diet of finishers and non-finishers in a 100-mile (161 km) mountain footrace. J. Am. Coll. Nutr, 30, 529–535. 10.1080/07315724.2011.10719999 PubMed DOI
Tam N., Nolte H. W., Noakes T. D. (2011). Changes in total body water content during running races of 21.1 km and 56 km in athletes drinking ad libitum. Clin. J. Sport Med. 21, 218–225. 10.1097/JSM.0b013e31820eb8d7 PubMed DOI
Van Beaumont W. (1972). Evaluation of hemoconcentration from hematocrit measurements. J. Appl. Physiol. 32, 712–713. 10.1152/jappl.1972.32.5.712 PubMed DOI
Wade C. E., Dressendorfer R. H., O'Brien J. C., Claybaugh J. R. (1981). Renal function, aldosterone, and vasopressin excretion following repeated long-distance running. J. Appl. Physiol. 50, 709–712. 10.1152/jappl.1981.50.4.709 PubMed DOI
Warburton D. E., Welsh R. C., Haykowsky M. J., Taylor D. A., Humen D. P. (2002). Biochemical changes as a result of prolonged strenuous exercise. Br. J. Sports Med. 36, 301–303. 10.1136/bjsm.36.4.301 PubMed DOI PMC
Warner E. R., Fornetti W. C., Jallo J. J., Pivarnik J. M. (2004). A skinfold model to predict fat-free mass in female athletes. J. Athl. Train. 39, 259–262. PubMed PMC
West M. L., Marsden P. A., Richardson R. M., Zettle R. M., Halperin M. L. (1986). New clinical approach to evaluate disorders of potassium excretion. Miner. Electrolyte Metab. 12, 234–238. PubMed
Zanchi D., Viallon M., Le Goff C., Millet G. P., Giardini G., Croisille P., et al. . (2016). Extreme mountain ultra-marathon leads to acute but transient increase in cerebral water diffusivity and plasma biomarkers levels changes. Front. Physiol. 7:664. 10.3389/fphys.2016.00664 PubMed DOI PMC
Zouhal H., Groussard C., Vincent S., Jacob C., Abderrahman A. B., Delamarche P., et al. (2009). Athletic performance and weight changes during the “Marathon of Sands” in athletes well-trained in endurance. Int. J. Sports Med. 30, 516–521. 10.1055/s-0029-1202350 PubMed DOI