Structural Dynamics of Carbon Dots in Water and N, N-Dimethylformamide Probed by All-Atom Molecular Dynamics Simulations

. 2018 Apr 10 ; 14 (4) : 2076-2083. [epub] 20180309

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29499118

Carbon dots (CDs), one of the youngest members of the carbon nanostructure family, are now widely experimentally studied for their tunable fluorescence properties, bleaching resistance, and biocompatibility. Their interaction with biomolecular systems has also been explored experimentally. However, many atomistic details still remain unresolved. Molecular dynamics (MD) simulations enabling atomistic and femtosecond resolutions simultaneously are a well-established tool of computational chemistry which can provide useful insights into investigated systems. Here we present a full procedure for performing MD simulations of CDs. We developed a builder for generating CDs of a desired size and with various oxygen-containing surface functional groups. Further, we analyzed the behavior of various CDs differing in size, surface functional groups, and degrees of functionalization by MD simulations. These simulations showed that surface functionalized CDs are stable in a water environment through the formation of an extensive hydrogen bonding network. We also analyzed the internal dynamics of individual layers of CDs and evaluated the role of surface functional groups on CD stability. We observed that carboxyl groups interconnected the neighboring layers and decreased the rate of internal rotations. Further, we monitored changes in the CD shape caused by an excess of charged carboxyl groups or carbonyl groups. In addition to simulations in water, we analyzed the behavior of CDs in the organic solvent DMF, which decreased the stability of pure CDs but increased the level of interlayer hydrogen bonding. We believe that the developed protocol, builder, and parameters will facilitate future studies addressing various aspects of structural features of CDs and nanocomposites containing CDs.

Zobrazit více v PubMed

Xu X.; Ray R.; Gu Y.; Ploehn H. J.; Gearheart L.; Raker K.; Scrivens W. A. Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments. J. Am. Chem. Soc. 2004, 126 (40), 12736–12737. 10.1021/ja040082h. PubMed DOI

Holá K.; Zhang Y.; Wang Y.; Giannelis E. P.; Zbořil R.; Rogach A. L. Carbon Dots - Emerging Light Emitters for Bioimaging, Cancer Therapy and Optoelectronics. Nano Today 2014, 9 (5), 590–603. 10.1016/j.nantod.2014.09.004. DOI

Wang Y.; Hu A. Carbon Quantum Dots: Synthesis, Properties and Applications. J. Mater. Chem. C 2014, 2, 6921–6939. 10.1039/C4TC00988F. DOI

Holá K.; Bourlinos A. B.; Kozák O.; Berka K.; Šišková K. M.; Havrdova M.; Tuček J.; Šafářová K.; Otyepka M.; Giannelis E. P.; et al. Photoluminescence Effects of Graphitic Core Size and Surface Functional Groups in Carbon Dots: COO- Induced Red-Shift Emission. Carbon 2014, 70, 279–286. 10.1016/j.carbon.2014.01.008. DOI

Li L.; Wu G.; Yang G.; Peng J.; Zhao J.; Zhu J.-J. Focusing on Luminescent Graphene Quantum Dots: Current Status and Future Perspectives. Nanoscale 2013, 5 (10), 4015–4039. 10.1039/c3nr33849e. PubMed DOI

Baker S. N.; Baker G. A. Luminescent Carbon Nanodots: Emergent Nanolights. Angew. Chem., Int. Ed. 2010, 49 (38), 6726–6744. 10.1002/anie.200906623. PubMed DOI

Lu J.; Yang J.; Wang J.; Lim A.; Wang S.; Loh K. P. One-Pot Synthesis of Fluorescent Carbon Graphene by the Exfoliation of Graphite in Ionic Liquids. ACS Nano 2009, 3 (8), 2367–2375. 10.1021/nn900546b. PubMed DOI

Liu R.; Wu D.; Feng X.; Müllen K. Bottom-up Fabrication of Photoluminiscent Graphene Quantum Dots with Uniform Morphology. J. Am. Chem. Soc. 2011, 133 (39), 15221–15223. 10.1021/ja204953k. PubMed DOI

Voloshina E.; Usvyat D.; Schutz M.; Dedkov Y.; Paulus B. On the Physisorption of Water on Graphene: A CCSD(T) Study. Phys. Chem. Chem. Phys. 2011, 13 (25), 12041–12047. 10.1039/c1cp20609e. PubMed DOI

Colherinhas G.; Fileti E. E.; Chaban V. V. Potential Energy Surface of Excited Semiconductors: Graphene Quantum Dot and BODIPY. Chem. Phys. 2016, 474, 1–6. 10.1016/j.chemphys.2016.05.011. DOI

Long R. Understanding the Electronic Structures of Graphene Quantum Dot Physisorption and Chemisorption onto the TiO2 (110) Surface: A First-Principles Calculation. ChemPhysChem 2013, 14 (3), 579–582. 10.1002/cphc.201200882. PubMed DOI

Wang L.; Jakowski J.; Garashchuk S. Adsorption of a Hydrogen Atom on a Graphene Flake Examined with Quantum Trajectory/Electronic Structure Dynamics. J. Phys. Chem. C 2014, 118, 16175–16187. 10.1021/jp503261k. DOI

Yoon H. M.; Kondaraju S.; Lee J. S. Molecular Dynamics Simulations of the Friction Experienced by Graphene Flakes in Rotational Motion. Tribol. Int. 2014, 70, 170–178. 10.1016/j.triboint.2013.10.005. DOI

Kang J. W.; Lee K. W. Molecular Dynamics Simulation of Square Graphene-Nanoflake Oscillator on Graphene Nanoribbon. J. Nanosci. Nanotechnol. 2014, 14 (12), 9158–9164. 10.1166/jnn.2014.10103. PubMed DOI

Lee E.; Kang J. W.; Kim K.-S.; Kwon O.-K. Molecular Dynamics Simulation Study on Energy Exchange Between Vibration Modes of a Square Graphene Nanoflake Oscillator. J. Nanosci. Nanotechnol. 2016, 16 (2), 1596–1602. 10.1166/jnn.2016.11959. PubMed DOI

Dalosto S. D.; Tinte S. Fluctuation Effects of the Electric Field Induced by Water on a Graphene Dot Band Gap. J. Phys. Chem. C 2011, 115 (11), 4381–4386. 10.1021/jp109297p. DOI

Wang Z.; Fang H.; Wang S.; Zhang F.; Wang D. Simulating Molecular Interactions of Carbon Nanoparticles with a Double-Stranded DNA Fragment. J. Chem. 2015, 2015, 531610.10.1155/2015/531610. DOI

Chen J.; Zhou G.; Chen L.; Wang Y.; Wang X.; Zeng S. Interaction of Graphene and Its Oxide with Lipid Membrane: A Molecular Dynamics Simulation Study. J. Phys. Chem. C 2016, 120 (11), 6225–6231. 10.1021/acs.jpcc.5b10635. DOI

Frost R.; Svedhem S.; Langhammer C.; Kasemo B. Graphene Oxide and Lipid Membranes: Size-Dependent Interactions. Langmuir 2016, 32 (11), 2708–2717. 10.1021/acs.langmuir.5b03239. PubMed DOI

Titov A. V.; Král P.; Pearson R. Sandwiched Graphene- Membrane Superstructures. ACS Nano 2010, 4 (1), 229–234. 10.1021/nn9015778. PubMed DOI

Tu Y. S.; Lv M.; Xiu P.; Huynh T.; Zhang M.; Castelli M.; Liu Z. R.; Huang Q.; Fan C. H.; Fang H. P.; et al. Destructive Extraction of Phospholipids from Escherichia Coli Membranes by Graphene Nanosheets. Nat. Nanotechnol. 2013, 8 (8), 594–601. 10.1038/nnano.2013.125. PubMed DOI

Li W.; Chung J. K.; Lee Y. K.; Groves J. T. Graphene-Templated Supported Lipid Bilayer Nanochannels. Nano Lett. 2016, 16 (8), 5022–5026. 10.1021/acs.nanolett.6b01798. PubMed DOI

Yan Y.; Li W.; Král P. Enantioselective Molecular Transport in Multilayer Graphene Nanopores. Nano Lett. 2017, 17 (11), 6742–6746. 10.1021/acs.nanolett.7b02846. PubMed DOI

Humphrey W.; Dalke A.; Schulten K. VMD - Visual Molecular Dynamics. J. Mol. Graphics 1996, 14, 33–38. 10.1016/0263-7855(96)00018-5. PubMed DOI

Kohlmeyer A. TopoTools. 2017; DOI: 10.5281/zenodo.545655. DOI

Johnson R. R.; Kohlmeyer A. Nanotube Builder 1.0: A Plug-in to Generate Carbon Nanotubes within Visual Molecular Dynamics. http://www.ks.uiuc.edu/Research/vmd/plugins/nanotube/ (accessed December 1, 2016).

Sudolská M.; Dubecký M.; Sarkar S.; Reckmeier C. J.; Zbořil R.; Rogach A. L.; Otyepka M. Nature of Absorption Bands in Oxygen-Functionalized Graphitic Carbon Dots. J. Phys. Chem. C 2015, 119 (23), 13369–13373. 10.1021/acs.jpcc.5b04080. DOI

Breneman C. M.; Wiberg K. B. Determining Atom-Centered Monopoles from Molecular Electrostatic Potentials. The Need for High Sampling Density in Formamide Conformational Analysis. J. Comput. Chem. 1990, 11 (3), 361–373. 10.1002/jcc.540110311. DOI

Sun H. COMPASS: An Ab Initio Force-Field Optimized for Condensed-Phase ApplicationsOverview with Details on Alkane and Benzene Compounds. J. Phys. Chem. B 1998, 102 (38), 7338–7364. 10.1021/jp980939v. DOI

Ulbricht H.; Moos G.; Hertel T. Interaction of C60 with Carbon Nanotubes and Graphite. Phys. Rev. Lett. 2003, 90 (9), 095501.10.1103/PhysRevLett.90.095501. PubMed DOI

Girifalco L. A.; Hodak M.; Lee R. S. Carbon Nanotubes, Buckyballs, Ropes, and a Universal Graphitic Potential. Phys. Rev. B: Condens. Matter Mater. Phys. 2000, 62 (19), 13104–13110. 10.1103/PhysRevB.62.13104. DOI

Cheng A.; Steele W. A. Computer Simulation of Ammonia on Graphite. I. Low Temperature Structure of Monolayer and Bilayer Films. J. Chem. Phys. 1990, 92 (6), 3858.10.1063/1.458562. DOI

Jorgensen W. L.; Maxwell D. S.; Tirado-Rives J. Development and Testing of the OLPS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. J. Am. Chem. Soc. 1996, 118 (15), 11225–11236. 10.1021/ja9621760. DOI

Lazar P.; Karlický F.; Jurečka P.; Kocman M.; Otyepková E.; Šafářová K.; Otyepka M. Adsorption of Small Organic Molecules on Graphene. J. Am. Chem. Soc. 2013, 135 (16), 6372–6377. 10.1021/ja403162r. PubMed DOI

Hornak V.; Abel R.; Okur A.; Strockbine B.; Roitberg A.; Simmerling C. Comparison of Multiple Amber Force Fields and Development of Improved Protein Backbone Parameters. Proteins: Struct., Funct., Genet. 2006, 65 (May), 712–725. 10.1002/prot.21123. PubMed DOI PMC

Van Der Spoel D.; Lindahl E.; Hess B.; Groenhof G.; Mark A. E.; Berendsen H. J. C. GROMACS: Fast, Flexible, and Free. J. Comput. Chem. 2005, 26 (16), 1701–1718. 10.1002/jcc.20291. PubMed DOI

Darden T.; York D.; Pedersen L. Particle Mesh Ewald: An N.log(N) Method for Ewald Sums in Large Systems. J. Chem. Phys. 1993, 98 (12), 10089–10092. 10.1063/1.464397. DOI

Mahoney M. W.; Jorgensen W. L. A Five-Site Model for Liquid Water and the Reproduction of the Density Anomaly by Rigid, Nonpolarizable Potential Functions. J. Chem. Phys. 2000, 112 (20), 8910.10.1063/1.481505. DOI

Aqvist J. J. Phys. Chem. 1990, 94, 8021–8024. 10.1021/j100384a009. DOI

Chandrasekhar J.; Spellmeyer D. C.; Jorgensen W. L. Energy Component Analysis for Dilute Aqueous Solutions of. J. Am. Chem. Soc. 1984, 106 (4), 903–910. 10.1021/ja00316a012. DOI

Bussi G.; Donadio D.; Parrinello M. Canonical Sampling Through Velocity Rescaling. J. Chem. Phys. 2007, 126 (1), 014101.10.1063/1.2408420. PubMed DOI

Berendsen H. J. C.; Postma J. P. M.; van Gunsteren W. F.; DiNola A.; Haak J. R. Molecular Dynamics with Coupling to an External Bath. J. Chem. Phys. 1984, 81 (8), 3684–3690. 10.1063/1.448118. DOI

Hess B.; Bekker H.; Berendsen H. J. C.; Fraaije J. G. E. M. LINCS: A Linear Constraint Solver for Molecular Simulations. J. Comput. Chem. 1997, 18 (12), 1463–1472. 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H. DOI

Tuinstra F.; Koenig J. L. Raman Spectrum of Graphite. J. Chem. Phys. 1970, 53, 1126.10.1063/1.1674108. DOI

Zhou J.; Booker C.; Li R.; Zhou X.; Sham T.; Sun X; Ding Z. An Electrochemical Avenue to Blue Luminescent Nanocrystals from Multiwalled Carbon Nanotubes (MWCNTs). J. Am. Chem. Soc. 2007, 129, 744–745. 10.1021/ja0669070. PubMed DOI

Zhu S.; Song Y.; Zhao X.; Shao J.; Zhang J.; Yang B. The Photoluminescence Mechanism in Carbon Dots (Graphene Quantum Dots, Carbon Nanodots, and Polymer Dots): Current State and Future Perspective. Nano Res. 2015, 8 (2), 355–381. 10.1007/s12274-014-0644-3. DOI

Zhu S.; Zhang J.; Qiao C.; Tang S.; Li Y.; Yuan W.; Li B.; Tian L.; Liu F.; Hu R.; et al. Strongly Green-Photoluminescent Graphene Quantum Dots for Bioimaging Applications. Chem. Commun. 2011, 47 (47), 6858–6860. 10.1039/c1cc11122a. PubMed DOI

Tian Z.; Zhang X.; Li D.; Zhou D.; Jing P.; Shen D.; Qu S.; Zbořil R.; Rogach A. L. Full-Color Inorganic Carbon Dot Phosphors for White-Light-Emitting Diodes. Adv. Opt. Mater. 2017, 5, 1700416.10.1002/adom.201700416. DOI

Sarkar S.; Gandla D.; Venkatesh Y.; Bangal P. R.; Ghosh S.; Yang Y.; Misra S. Graphene Quantum Dots from Graphite by Liquid Exfoliation Showing Excitation-Independent Emission, Fluorescence Upconversion and Delayed Fluorescence. Phys. Chem. Chem. Phys. 2016, 18 (31), 21278–21287. 10.1039/C6CP01528J. PubMed DOI

Bourlinos A. B.; Karakassides M. A.; Kouloumpis A.; Gournis D.; Bakandritsos A.; Papagiannouli I.; Aloukos P.; Couris S.; Holá K.; Zbořil R.; et al. Synthesis, Characterization and Non-Linear Optical Response of Organophilic Carbon Dots. Carbon 2013, 61, 640–649. 10.1016/j.carbon.2013.05.017. DOI

Lim C. S.; Holá K.; Ambrosi A.; Zbořil R.; Pumera M. Graphene and Carbon Quantum Dots Electrochemistry. Electrochem. Commun. 2015, 52, 75–79. 10.1016/j.elecom.2015.01.023. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...