Structural Dynamics of Carbon Dots in Water and N, N-Dimethylformamide Probed by All-Atom Molecular Dynamics Simulations
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
29499118
PubMed Central
PMC5905991
DOI
10.1021/acs.jctc.7b01149
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Carbon dots (CDs), one of the youngest members of the carbon nanostructure family, are now widely experimentally studied for their tunable fluorescence properties, bleaching resistance, and biocompatibility. Their interaction with biomolecular systems has also been explored experimentally. However, many atomistic details still remain unresolved. Molecular dynamics (MD) simulations enabling atomistic and femtosecond resolutions simultaneously are a well-established tool of computational chemistry which can provide useful insights into investigated systems. Here we present a full procedure for performing MD simulations of CDs. We developed a builder for generating CDs of a desired size and with various oxygen-containing surface functional groups. Further, we analyzed the behavior of various CDs differing in size, surface functional groups, and degrees of functionalization by MD simulations. These simulations showed that surface functionalized CDs are stable in a water environment through the formation of an extensive hydrogen bonding network. We also analyzed the internal dynamics of individual layers of CDs and evaluated the role of surface functional groups on CD stability. We observed that carboxyl groups interconnected the neighboring layers and decreased the rate of internal rotations. Further, we monitored changes in the CD shape caused by an excess of charged carboxyl groups or carbonyl groups. In addition to simulations in water, we analyzed the behavior of CDs in the organic solvent DMF, which decreased the stability of pure CDs but increased the level of interlayer hydrogen bonding. We believe that the developed protocol, builder, and parameters will facilitate future studies addressing various aspects of structural features of CDs and nanocomposites containing CDs.
Zobrazit více v PubMed
Xu X.; Ray R.; Gu Y.; Ploehn H. J.; Gearheart L.; Raker K.; Scrivens W. A. Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments. J. Am. Chem. Soc. 2004, 126 (40), 12736–12737. 10.1021/ja040082h. PubMed DOI
Holá K.; Zhang Y.; Wang Y.; Giannelis E. P.; Zbořil R.; Rogach A. L. Carbon Dots - Emerging Light Emitters for Bioimaging, Cancer Therapy and Optoelectronics. Nano Today 2014, 9 (5), 590–603. 10.1016/j.nantod.2014.09.004. DOI
Wang Y.; Hu A. Carbon Quantum Dots: Synthesis, Properties and Applications. J. Mater. Chem. C 2014, 2, 6921–6939. 10.1039/C4TC00988F. DOI
Holá K.; Bourlinos A. B.; Kozák O.; Berka K.; Šišková K. M.; Havrdova M.; Tuček J.; Šafářová K.; Otyepka M.; Giannelis E. P.; et al. Photoluminescence Effects of Graphitic Core Size and Surface Functional Groups in Carbon Dots: COO- Induced Red-Shift Emission. Carbon 2014, 70, 279–286. 10.1016/j.carbon.2014.01.008. DOI
Li L.; Wu G.; Yang G.; Peng J.; Zhao J.; Zhu J.-J. Focusing on Luminescent Graphene Quantum Dots: Current Status and Future Perspectives. Nanoscale 2013, 5 (10), 4015–4039. 10.1039/c3nr33849e. PubMed DOI
Baker S. N.; Baker G. A. Luminescent Carbon Nanodots: Emergent Nanolights. Angew. Chem., Int. Ed. 2010, 49 (38), 6726–6744. 10.1002/anie.200906623. PubMed DOI
Lu J.; Yang J.; Wang J.; Lim A.; Wang S.; Loh K. P. One-Pot Synthesis of Fluorescent Carbon Graphene by the Exfoliation of Graphite in Ionic Liquids. ACS Nano 2009, 3 (8), 2367–2375. 10.1021/nn900546b. PubMed DOI
Liu R.; Wu D.; Feng X.; Müllen K. Bottom-up Fabrication of Photoluminiscent Graphene Quantum Dots with Uniform Morphology. J. Am. Chem. Soc. 2011, 133 (39), 15221–15223. 10.1021/ja204953k. PubMed DOI
Voloshina E.; Usvyat D.; Schutz M.; Dedkov Y.; Paulus B. On the Physisorption of Water on Graphene: A CCSD(T) Study. Phys. Chem. Chem. Phys. 2011, 13 (25), 12041–12047. 10.1039/c1cp20609e. PubMed DOI
Colherinhas G.; Fileti E. E.; Chaban V. V. Potential Energy Surface of Excited Semiconductors: Graphene Quantum Dot and BODIPY. Chem. Phys. 2016, 474, 1–6. 10.1016/j.chemphys.2016.05.011. DOI
Long R. Understanding the Electronic Structures of Graphene Quantum Dot Physisorption and Chemisorption onto the TiO2 (110) Surface: A First-Principles Calculation. ChemPhysChem 2013, 14 (3), 579–582. 10.1002/cphc.201200882. PubMed DOI
Wang L.; Jakowski J.; Garashchuk S. Adsorption of a Hydrogen Atom on a Graphene Flake Examined with Quantum Trajectory/Electronic Structure Dynamics. J. Phys. Chem. C 2014, 118, 16175–16187. 10.1021/jp503261k. DOI
Yoon H. M.; Kondaraju S.; Lee J. S. Molecular Dynamics Simulations of the Friction Experienced by Graphene Flakes in Rotational Motion. Tribol. Int. 2014, 70, 170–178. 10.1016/j.triboint.2013.10.005. DOI
Kang J. W.; Lee K. W. Molecular Dynamics Simulation of Square Graphene-Nanoflake Oscillator on Graphene Nanoribbon. J. Nanosci. Nanotechnol. 2014, 14 (12), 9158–9164. 10.1166/jnn.2014.10103. PubMed DOI
Lee E.; Kang J. W.; Kim K.-S.; Kwon O.-K. Molecular Dynamics Simulation Study on Energy Exchange Between Vibration Modes of a Square Graphene Nanoflake Oscillator. J. Nanosci. Nanotechnol. 2016, 16 (2), 1596–1602. 10.1166/jnn.2016.11959. PubMed DOI
Dalosto S. D.; Tinte S. Fluctuation Effects of the Electric Field Induced by Water on a Graphene Dot Band Gap. J. Phys. Chem. C 2011, 115 (11), 4381–4386. 10.1021/jp109297p. DOI
Wang Z.; Fang H.; Wang S.; Zhang F.; Wang D. Simulating Molecular Interactions of Carbon Nanoparticles with a Double-Stranded DNA Fragment. J. Chem. 2015, 2015, 531610.10.1155/2015/531610. DOI
Chen J.; Zhou G.; Chen L.; Wang Y.; Wang X.; Zeng S. Interaction of Graphene and Its Oxide with Lipid Membrane: A Molecular Dynamics Simulation Study. J. Phys. Chem. C 2016, 120 (11), 6225–6231. 10.1021/acs.jpcc.5b10635. DOI
Frost R.; Svedhem S.; Langhammer C.; Kasemo B. Graphene Oxide and Lipid Membranes: Size-Dependent Interactions. Langmuir 2016, 32 (11), 2708–2717. 10.1021/acs.langmuir.5b03239. PubMed DOI
Titov A. V.; Král P.; Pearson R. Sandwiched Graphene- Membrane Superstructures. ACS Nano 2010, 4 (1), 229–234. 10.1021/nn9015778. PubMed DOI
Tu Y. S.; Lv M.; Xiu P.; Huynh T.; Zhang M.; Castelli M.; Liu Z. R.; Huang Q.; Fan C. H.; Fang H. P.; et al. Destructive Extraction of Phospholipids from Escherichia Coli Membranes by Graphene Nanosheets. Nat. Nanotechnol. 2013, 8 (8), 594–601. 10.1038/nnano.2013.125. PubMed DOI
Li W.; Chung J. K.; Lee Y. K.; Groves J. T. Graphene-Templated Supported Lipid Bilayer Nanochannels. Nano Lett. 2016, 16 (8), 5022–5026. 10.1021/acs.nanolett.6b01798. PubMed DOI
Yan Y.; Li W.; Král P. Enantioselective Molecular Transport in Multilayer Graphene Nanopores. Nano Lett. 2017, 17 (11), 6742–6746. 10.1021/acs.nanolett.7b02846. PubMed DOI
Humphrey W.; Dalke A.; Schulten K. VMD - Visual Molecular Dynamics. J. Mol. Graphics 1996, 14, 33–38. 10.1016/0263-7855(96)00018-5. PubMed DOI
Kohlmeyer A. TopoTools. 2017; DOI: 10.5281/zenodo.545655. DOI
Johnson R. R.; Kohlmeyer A. Nanotube Builder 1.0: A Plug-in to Generate Carbon Nanotubes within Visual Molecular Dynamics. http://www.ks.uiuc.edu/Research/vmd/plugins/nanotube/ (accessed December 1, 2016).
Sudolská M.; Dubecký M.; Sarkar S.; Reckmeier C. J.; Zbořil R.; Rogach A. L.; Otyepka M. Nature of Absorption Bands in Oxygen-Functionalized Graphitic Carbon Dots. J. Phys. Chem. C 2015, 119 (23), 13369–13373. 10.1021/acs.jpcc.5b04080. DOI
Breneman C. M.; Wiberg K. B. Determining Atom-Centered Monopoles from Molecular Electrostatic Potentials. The Need for High Sampling Density in Formamide Conformational Analysis. J. Comput. Chem. 1990, 11 (3), 361–373. 10.1002/jcc.540110311. DOI
Sun H. COMPASS: An Ab Initio Force-Field Optimized for Condensed-Phase ApplicationsOverview with Details on Alkane and Benzene Compounds. J. Phys. Chem. B 1998, 102 (38), 7338–7364. 10.1021/jp980939v. DOI
Ulbricht H.; Moos G.; Hertel T. Interaction of C60 with Carbon Nanotubes and Graphite. Phys. Rev. Lett. 2003, 90 (9), 095501.10.1103/PhysRevLett.90.095501. PubMed DOI
Girifalco L. A.; Hodak M.; Lee R. S. Carbon Nanotubes, Buckyballs, Ropes, and a Universal Graphitic Potential. Phys. Rev. B: Condens. Matter Mater. Phys. 2000, 62 (19), 13104–13110. 10.1103/PhysRevB.62.13104. DOI
Cheng A.; Steele W. A. Computer Simulation of Ammonia on Graphite. I. Low Temperature Structure of Monolayer and Bilayer Films. J. Chem. Phys. 1990, 92 (6), 3858.10.1063/1.458562. DOI
Jorgensen W. L.; Maxwell D. S.; Tirado-Rives J. Development and Testing of the OLPS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. J. Am. Chem. Soc. 1996, 118 (15), 11225–11236. 10.1021/ja9621760. DOI
Lazar P.; Karlický F.; Jurečka P.; Kocman M.; Otyepková E.; Šafářová K.; Otyepka M. Adsorption of Small Organic Molecules on Graphene. J. Am. Chem. Soc. 2013, 135 (16), 6372–6377. 10.1021/ja403162r. PubMed DOI
Hornak V.; Abel R.; Okur A.; Strockbine B.; Roitberg A.; Simmerling C. Comparison of Multiple Amber Force Fields and Development of Improved Protein Backbone Parameters. Proteins: Struct., Funct., Genet. 2006, 65 (May), 712–725. 10.1002/prot.21123. PubMed DOI PMC
Van Der Spoel D.; Lindahl E.; Hess B.; Groenhof G.; Mark A. E.; Berendsen H. J. C. GROMACS: Fast, Flexible, and Free. J. Comput. Chem. 2005, 26 (16), 1701–1718. 10.1002/jcc.20291. PubMed DOI
Darden T.; York D.; Pedersen L. Particle Mesh Ewald: An N.log(N) Method for Ewald Sums in Large Systems. J. Chem. Phys. 1993, 98 (12), 10089–10092. 10.1063/1.464397. DOI
Mahoney M. W.; Jorgensen W. L. A Five-Site Model for Liquid Water and the Reproduction of the Density Anomaly by Rigid, Nonpolarizable Potential Functions. J. Chem. Phys. 2000, 112 (20), 8910.10.1063/1.481505. DOI
Aqvist J. J. Phys. Chem. 1990, 94, 8021–8024. 10.1021/j100384a009. DOI
Chandrasekhar J.; Spellmeyer D. C.; Jorgensen W. L. Energy Component Analysis for Dilute Aqueous Solutions of. J. Am. Chem. Soc. 1984, 106 (4), 903–910. 10.1021/ja00316a012. DOI
Bussi G.; Donadio D.; Parrinello M. Canonical Sampling Through Velocity Rescaling. J. Chem. Phys. 2007, 126 (1), 014101.10.1063/1.2408420. PubMed DOI
Berendsen H. J. C.; Postma J. P. M.; van Gunsteren W. F.; DiNola A.; Haak J. R. Molecular Dynamics with Coupling to an External Bath. J. Chem. Phys. 1984, 81 (8), 3684–3690. 10.1063/1.448118. DOI
Hess B.; Bekker H.; Berendsen H. J. C.; Fraaije J. G. E. M. LINCS: A Linear Constraint Solver for Molecular Simulations. J. Comput. Chem. 1997, 18 (12), 1463–1472. 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H. DOI
Tuinstra F.; Koenig J. L. Raman Spectrum of Graphite. J. Chem. Phys. 1970, 53, 1126.10.1063/1.1674108. DOI
Zhou J.; Booker C.; Li R.; Zhou X.; Sham T.; Sun X; Ding Z. An Electrochemical Avenue to Blue Luminescent Nanocrystals from Multiwalled Carbon Nanotubes (MWCNTs). J. Am. Chem. Soc. 2007, 129, 744–745. 10.1021/ja0669070. PubMed DOI
Zhu S.; Song Y.; Zhao X.; Shao J.; Zhang J.; Yang B. The Photoluminescence Mechanism in Carbon Dots (Graphene Quantum Dots, Carbon Nanodots, and Polymer Dots): Current State and Future Perspective. Nano Res. 2015, 8 (2), 355–381. 10.1007/s12274-014-0644-3. DOI
Zhu S.; Zhang J.; Qiao C.; Tang S.; Li Y.; Yuan W.; Li B.; Tian L.; Liu F.; Hu R.; et al. Strongly Green-Photoluminescent Graphene Quantum Dots for Bioimaging Applications. Chem. Commun. 2011, 47 (47), 6858–6860. 10.1039/c1cc11122a. PubMed DOI
Tian Z.; Zhang X.; Li D.; Zhou D.; Jing P.; Shen D.; Qu S.; Zbořil R.; Rogach A. L. Full-Color Inorganic Carbon Dot Phosphors for White-Light-Emitting Diodes. Adv. Opt. Mater. 2017, 5, 1700416.10.1002/adom.201700416. DOI
Sarkar S.; Gandla D.; Venkatesh Y.; Bangal P. R.; Ghosh S.; Yang Y.; Misra S. Graphene Quantum Dots from Graphite by Liquid Exfoliation Showing Excitation-Independent Emission, Fluorescence Upconversion and Delayed Fluorescence. Phys. Chem. Chem. Phys. 2016, 18 (31), 21278–21287. 10.1039/C6CP01528J. PubMed DOI
Bourlinos A. B.; Karakassides M. A.; Kouloumpis A.; Gournis D.; Bakandritsos A.; Papagiannouli I.; Aloukos P.; Couris S.; Holá K.; Zbořil R.; et al. Synthesis, Characterization and Non-Linear Optical Response of Organophilic Carbon Dots. Carbon 2013, 61, 640–649. 10.1016/j.carbon.2013.05.017. DOI
Lim C. S.; Holá K.; Ambrosi A.; Zbořil R.; Pumera M. Graphene and Carbon Quantum Dots Electrochemistry. Electrochem. Commun. 2015, 52, 75–79. 10.1016/j.elecom.2015.01.023. DOI