Imaging linear and circular polarization features in leaves with complete Mueller matrix polarimetry
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
9999-NIST
Intramural NIST DOC - United States
PubMed
29526506
PubMed Central
PMC5970099
DOI
10.1016/j.bbagen.2018.03.005
PII: S0304-4165(18)30061-8
Knihovny.cz E-zdroje
- Klíčová slova
- Chlorophyll a, Chloroplast, Circular dichroism, Mueller matrix polarimetry, Photosynthesis,
- MeSH
- algoritmy * MeSH
- fotosyntéza * MeSH
- kukuřice setá růst a vývoj metabolismus MeSH
- listy rostlin růst a vývoj metabolismus MeSH
- počítačové zpracování obrazu metody MeSH
- polarizační mikroskopie metody MeSH
- refraktometrie metody MeSH
- světlo MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Spectropolarimetry of intact plant leaves allows to probe the molecular architecture of vegetation photosynthesis in a non-invasive and non-destructive way and, as such, can offer a wealth of physiological information. In addition to the molecular signals due to the photosynthetic machinery, the cell structure and its arrangement within a leaf can create and modify polarization signals. Using Mueller matrix polarimetry with rotating retarder modulation, we have visualized spatial variations in polarization in transmission around the chlorophyll a absorbance band from 650 nm to 710 nm. We show linear and circular polarization measurements of maple leaves and cultivated maize leaves and discuss the corresponding Mueller matrices and the Mueller matrix decompositions, which show distinct features in diattenuation, polarizance, retardance and depolarization. Importantly, while normal leaf tissue shows a typical split signal with both a negative and a positive peak in the induced fractional circular polarization and circular dichroism, the signals close to the veins only display a negative band. The results are similar to the negative band as reported earlier for single macrodomains. We discuss the possible role of the chloroplast orientation around the veins as a cause of this phenomenon. Systematic artefacts are ruled out as three independent measurements by different instruments gave similar results. These results provide better insight into circular polarization measurements on whole leaves and options for vegetation remote sensing using circular polarization.
Department of Earth Sciences Utrecht University Budapestlaan 4 Utrecht 3584 CD The Netherlands
HIMS Photonics Group University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
LaserLaB VU Amsterdam De Boelelaan 1083 Amsterdam 1081 HV The Netherlands
Leiden Observatory Leiden University P O Box 9513 Leiden 2300 RA The Netherlands
Molecular Cell Physiology VU Amsterdam De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
Space Telescope Science Institute 3700 San Martin Drive Baltimore MD 21218 USA
Systems Bioinformatics VU Amsterdam De Boelelaan 1108 Amsterdam 1081 HZ The Netherlands
Zobrazit více v PubMed
MacDermott A, Barron L, Brack A, Buhse T, Drake A, Emery R, Gottarelli G, Greenberg J, Haberle R, Hegstrom R, Hobbs K, Kondepudi D, McKay C, Moorbath S, Raulin F, Sandford M, Schwartzman D, Thiemann WP, Tranter G, Zarnecki J. Homochirality as the signature of life: the SETH cigar. Planetary and Space Science. 1996;44(11):1441–1446. PubMed
Fujii N, Saito T. Homochirality and life. The Chemical Record. 2004;4(5):267–278. PubMed
Urry LA, Cain ML, Wasserman SA, Minorsky PV, Reece JB. Campbell Biology. 11. Pearson; 2016.
Garab G, van Amerongen H. Linear dichroism and circular dichroism in photosynthesis research. Photosynthesis Research. 2009;101(2–3):135–146. PubMed PMC
Fasman GD. Circular dichroism and the conformational analysis of biomolecules. Springer Science & Business Media; 2013.
Tóth TN, Rai N, Solymosi K, Zsiros O, Schröder WP, Garab G, van Amerongen H, Horton P, Kovács L. Fingerprinting the macroorganisation of pigment-protein complexes in plant thylakoid membranes in vivo by circular-dichroism spectroscopy. Biochimica et Biophysica Acta (BBA)-Bioenergetics. 2016 PubMed
Patty CHL, Visser LJJ, Ariese F, Buma WJ, Sparks WB, van Spanning RJM, Röling WFM, Snik F. Circular spectropolarimetric sensing of chiral photosystems in decaying leaves. Journal of Quantitative Spectroscopy and Radiative Transfer. 2017;189:303–311.
Peltoniemi JI, Gritsevich M, Puttonen E. Reflectance and polarization characteristics of various vegetation types. Springer Nature; 2015.
Vanderbilt VC, Grant L, Biehl L, Robinson B. Specular, diffuse, and polarized light scattered by two wheat canopies. Applied optics. 1985;24(15):2408–2418. PubMed
Vanderbilt VC, Grant L, Daughtry C. Polarization of light scattered by vegetation. Proceedings of the IEEE. 1985;73(6):1012–1024.
Vanderbilt VC, Daughtry CST, Kupinski MK, Bradley CL, French AN, Bronson K, Chipman RA, Dahlgren RP. Estimating the relative water content of leaves in a cotton canopy. In: Snik F, Shaw JA, editors. Polarization Science and Remote Sensing VIII. Vol. 10407. International Society for Optics and Photonics, SPIE; 2017. p. 104070Z.
Grant L, Daughtry C, Vanderbilt V. Polarized and specular reflectance variation with leaf surface features. Physiologia Plantarum. 1993;88(1):1–9.
Pospergelis M. Spectroscopic measurements of the four stokes parameters for light scattered by natural objects. Soviet Astronomy. 1969;12:973.
Wolstencroft RD. The circular polarization of light reflected from certain optically active surfaces. IAU Colloq. 23: Planets, Stars, and Nebulae: Studied with Photopolarimetry. 1974:495.
Wolstencroft RD, Tranter GE, Le Pevelen DD. Diffuse reflectance circular dichroism for the detection of molecular chirality: An application in remote sensing of flora. Bioastronomy 2002: Life Among the Stars. 2004;213:149.
Sparks W, Hough J, Kolokolova L, Germer T, Chen F, DasSarma S, DasSarma P, Robb F, Manset N, Reid I, Macchetto F, Martin W. Circular polarization in scattered light as a possible biomarker. Journal of Quantitative Spectroscopy and Radiative Transfer. 2009;110(14–16):1771–1779.
Sparks WB, Hough J, Germer TA, Chen F, DasSarma S, Das-Sarma P, Robb FT, Manset N, Kolokolova L, Reid N, et al. Detection of circular polarization in light scattered from photosynthetic microbes. Proceedings of the National Academy of Sciences. 2009;106(19):7816–7821. PubMed PMC
Finzi L, Bustamante C, Garab G, Juang CB. Direct observation of large chiral domains in chloroplast thylakoid membranes by differential polarization microscopy. Proceedings of the National Academy of Sciences. 1989;86(22):8748–8752. PubMed PMC
Garab G, Wells S, Finzi L, Bustamante C. Helically organized macroaggregates of pigment-protein complexes in chloroplasts: evidence from circular intensity differential scattering. Biochemistry. 1988;27(16):5839–5843. PubMed
Garab G, Finzi L, Bustamante C. Differential polarization imaging of chloroplasts: Microscopic and macroscopic linear and circular dichroism. Light in Biology and Medicine. 1991;2
Garab G, Faludi-Daniel A, Sutherland JC, Hind G. Macroorganization of chlorophyll a/b light-harvesting complex in thylakoids and aggregates: information from circular differential scattering. Biochemistry. 1988;27(7):2425–2430.
Miloslavina Y, Lambrev PH, Jávorfi T, Várkonyi Z, Karlický V, Wall JS, Hind G, Garab G. Anisotropic circular dichroism signatures of oriented thylakoid membranes and lamellar aggregates of lhcii. Photosynthesis research. 2012;111(1–2):29–39. PubMed
Morio J, Goudail F. Influence of the order of diattenuator, retarder, and polarizer in polar decomposition of mueller matrices. Optics letters. 2004;29(19):2234–2236. PubMed
Lu SY, Chipman RA. Interpretation of mueller matrices based on polar decomposition. Journal of the Optical Society of America A. 1996;13(5):1106–1113.
Ossikovski R, Martino AD, Guyot S. Forward and reverse product decompositions of depolarizing mueller matrices. Optics Letters. 2007;32(6):689–691. PubMed
Azzam RMA. Photopolarimetric measurement of the mueller matrix by fourier analysis of a single detected signal. Optics Letters. 1978;2(6):148–150. PubMed
Smith MH. Optimization of a dual-rotating-retarder mueller matrix polarimeter. Applied Optics. 2002;41(13):2488–2493. PubMed
Goldstein DH. Mueller matrix dual-rotating retarder polarimeter. Applied optics. 1992;31(31):6676–6683. PubMed
Garab G, Leegood RC, Walker DA, Sutherland JC, Hind G. Reversible changes in macroorganization of the light-harvesting chlorophyll a/b pigment-protein complex detected by circular dichroism. Biochemistry. 1988;27(7):2430–2434.
Cseh Z, Rajagopal S, Tsonev T, Busheva M, Papp E, Garab G. Thermooptic effect in chloroplast thylakoid membranes. thermal and light stability of pigment arrays with different levels of structural complexity. Biochemistry. 2000;39(49):15250–15257. PubMed
Garab G, Kieleczawa J, Sutherland JC, Bustamante C, Hind G. Organization of pigment-protein complexes into macrodomains in the thylakoid membranes of wild-type and chlorophyll fo-less mutant of barley as revealed by circular dichroism. Photochemistry and Photobiology. 1991;54(2):273–281.
Faludi-Daniel A, Demeter S, Garay AS. Circular dichroism spectra of granal and agranal chloroplasts of maize. Plant Physiology. 1973;52(1):54–56. PubMed PMC
Martin W, Hesse E, Hough J, Gledhill T. High-sensitivity stokes spectropolarimetry on cyanobacteria. Journal of Quantitative Spectroscopy and Radiative Transfer. 2016;170:131–141.
Garab G, Galajda P, Pomozi I, Finzi L, Praznovszky T, Ormos P, Van Amerongen H. Alignment of biological microparticles by a polarized laser beam. European Biophysics Journal. 2005;34(4):335–343. PubMed