• This record comes from PubMed

Ecological differentiation, speciation, and rarity: How do they match in Tephroseris longifolia agg. (Asteraceae)?

. 2018 Mar ; 8 (5) : 2453-2470. [epub] 20180131

Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic-ecollection

Document type Journal Article

Tephroseris longifolia agg. is a complex group of outcrossing perennials distributed throughout Central Europe. Recent morphological study revealed six morphotypes corresponding to five previously distinguished subspecies, together with Alpine and Pannonian morphotypes of T. longifolia subsp. longifolia. The delimited morphotypes differ in relative DNA content, geographical range, and rarity. We compared ecological niches of the six morphotypes in order to assess the impact of ecological differentiation on the speciation processes within the T. longifolia agg. Further, we examined whether morphotypes with small range are more ecologically specialized than their widespread relatives. The distribution area of the aggregate includes the Alps, Apennines, Carpathians, and the Pannonian Basin. Ecological variables linked to climate, topography, soil, and vegetation were gathered from 135 circular plots recorded in 35 localities. Related variables were grouped to describe the partial ecological niches: climatic, topographic, pedological, biotic, and coenotic (based either on vascular plants or on bryophytes), each of them visualized as an envelope in the two-dimensional nonmetric multidimensional scaling ordination space. Each partial ecological niche for a given morphotype was characterized by its position (location of the envelope centroid), breadth (surface of the envelope), and overlaps with envelopes of the other morphotypes. Mantel statistics based on Spearman correlation coefficients were used to quantify differentiation of morphotypes in ecological parameters represented by the partial ecological niches. The significant niche differentiation was confirmed for climatic, topographic, pedological, and vascular plant-based coenotic niches. Ecological niche differentiation corresponded well to morphological and partially also to karyological differentiation. Narrowly distributed morphotypes occupied more specific habitats and had narrower ecological niches than their widespread relatives. Ecological differentiation could be considered an important driver in allopatric speciation within the T. longifolia agg. Our results demonstrate that quantification of ecological divergence is helpful in assessing evolutionary history of closely related taxa.

See more in PubMed

Addinsoft . (2009). XLSTAT 2009. Addinsoft, France. Retrieved from http://www.xlstat.com/en/learning-center/tutorials/running-a-mantel-test-with-xlstat.html.

Aeschimann, D. , Lauber, K. , Moser, D. M. , & Theurillat, J.‐P. (2004). Flora alpina. Bern: Haupt Verlag AG.

Baskauf, C. J. , & Eickmeier, W. G. (1994). Comparative ecophysiology of rare and a widespread species of Echinacea (Asteraceae). American Journal of Botany, 81, 958–964. https://doi.org/10.2307/2445288 DOI

Baskin, J. M. , Snyder, K. M. , Walck, J. L. , & Baskin, C. C. (1997). The comparative autecology of endemic, globally rare, and geographically widespread, common plant species: Three case studies. Southwestern Naturalist, 42, 384–399.

Bilz, M. , Kell, S. P. , Maxted, N. , & Lansdown, R. V. (2011). European red list of vascular plants. Luxembourg: Publications Office of the European Union.

Blanco‐Pastor, J. L. , & Vargas, P. (2013). Autecological traits determined two evolutionary strategies in Mediterranean plants during the Quaternary: Low differentiation and range expansion versus geographical speciation in Linaria . Molecular Ecology, 22, 5651–5668. https://doi.org/10.1111/mec.12518 PubMed DOI

ter Braak, C. J. F. , & Šmilauer, P. (2012). Canoco reference manual and user's guide: Software for ordination (version 5.0). Ithaca, NY: Microcomputer Power.

Bray, R. H. , & Kurtz, L. T. (1945). Determination of total, organic, and available forms of phosphorus in soils. Soil Science, 59, 39–45. https://doi.org/10.1097/00010694-194501000-00006 DOI

Brown, J. H. (1984). On the relationship between abundance and distribution of species. American Naturalist, 124, 255–279. https://doi.org/10.1086/284267 DOI

Chytrý, M. , Tichý, L. , Holt, J. , & Botta‐Dukát, Z. (2002). Determination of diagnostic species with statistical fidelity measures. Journal of Vegetation Science, 13, 79–90. https://doi.org/10.1111/j.1654-1103.2002.tb02025.x DOI

Dormann, C. F. , Gruber, B. , Winter, M. , & Herrmann, D. (2010). Evolution of climate niches in European mammals? Biology Letters, 6, 229–232. https://doi.org/10.1098/rsbl.2009.0688 PubMed DOI PMC

Dušková, E. , Kolář, F. , Sklenář, P. , Rauchová, J. , Kubešová, M. , Fér, T. , … Marhold, K. (2010). Genome size correlates with growth form, habitat and phylogeny in the Andean genus Lasiocephalus (Asteraceae). Preslia, 82, 127–148.

Feráková, V. , Maglocký, Š. , & Marhold, K. (2001). Červený zoznam papraďorastov a semenných rastlín Slovenska In Baláž D., Marhold K. & Urban P. (Eds.), Červený zoznam rastlín a živočíchov Slovenska (pp. 44–77). Ochrana Prírody, 20 Suppl.

Frazer, G. W. , Canham, C. D. , & Lertzman, K. P. (1999). Gap light analyzer (GLA): Imaging software to extract canopy structure and gap light transmission indices from true‐colour fish‐eye photographs. User's manual and program documentation. Burnaby and Millbrook: Simon Fraser University and Institute of Ecosystem Studies.

Fridley, J. D. , Vandermast, D. B. , Kuppinger, D. M. , Manthey, M. , & Peet, R. K. (2007). Co‐occurrence based assessment of habitat generalists and specialists: A new approach for the measurement of niche width. Journal of Ecology, 95, 707–722. https://doi.org/10.1111/j.1365-2745.2007.01236.x DOI

Goovaerts, P. (2000). Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. Journal of Hydrology, 228, 113–129. https://doi.org/10.1016/S0022-1694(00)00144-x DOI

Greuter, W. (2006. –2009) Compositae (pro parte majore). In Greuter W. & von Raab‐Straube E. (Eds.), Euro+Med Plantbase – The information resource for Euro‐Mediterranean plant diversity. Retrieved from http://ww2.bgbm.org/EuroPlusMed.

Gross, B. L. , & Rieseberg, L. H. (2005). The ecological genetics of homoploid hybrid speciation. Journal of Heredity, 96, 241–252. https://doi.org/10.1093/jhered/esi026 PubMed DOI PMC

Grulich, V. (2012). Red List of vascular plants of the Czech Republic: 3rd edition. Preslia, 84, 631–645.

Hanski, I. , Kouki, J. , & Halkka, A. (1993). Three explanations of the positive relationship between distribution and abundance of species In Ricklefs R., & Schluter D. (Eds.), Species diversity in ecological communities: Historical and geographical perspectives (pp. 108–116). Chicago: University of Chicago Press.

Haylock, M. R. , Hofstra, N. , Klein Tank, A. M. G. , Klok, E. J. , Jones, P. D. , & New, M. (2008). A European daily high‐resolution gridded data set of surface temperature and precipitation for 1950–2006. Journal of Geophysical Research, 113, D20119 https://doi.org/10.1029/2008JD010201 DOI

Hegedüšová, K. , Škodová, I. , Janišová, M. , & Kochjarová, J. (2013). Phytosociological affiliation of Annex II species Tephroseris longifolia subsp. moravica in comparison with two related Tephroseris species with overlapping distribution. Biologia (Bratislava), 68, 861–871.

Herben, T. (1987). Bryophytes in grassland vegetation sample plots: What is their correlation with vascular plants? Folia Geobotanica, 22, 35–41. https://doi.org/10.1007/BF02853215 DOI

Hewitt, G. M. (2011). Mediterranean Peninsulas: The evolution of hotspots In Frank E., Zachos F. E. & Habel J. C. (Eds.), Biodiversity hotspots: Distribution and protection of conservation (pp. 123–147). Berlin, Heidelberg: Springer‐Verlag; https://doi.org/10.1007/978-3-642-20992-5 DOI

Hudson, G. , & Wackernagel, H. (1994). Mapping temperature using kriging with external drift: Theory and an example from Scotland. International Journal of Climatology, 14, 77–91. https://doi.org/10.1002/(ISSN)1097-0088 DOI

Hutchinson, G. E. (1957). Population studies – Animal ecology and demography – Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology, 22, 415–427. https://doi.org/10.1101/SQB.1957.022.01.039 DOI

Imbert, E. , Youssef, S. , Carbonell, D. , & Baumel, A. (2011). Do endemic species always have a low competitive ability? A test for two Mediterranean plant species under controlled conditions. Journal of Plant Ecology, 5, 305–312. https://doi.org/10.1093/jpe/rtr033 DOI

Jaime, R. , Alcántara, J. M. , Bastida, J. M. , & Rey, P. J. (2015). Complex patterns of environmental niche evolution in Iberian columbines (Gen. Aquilegia, Ranunculaceae). Journal of Plant Ecology, 8, 457–467. https://doi.org/10.1093/jpe/rtu044 DOI

Janišová, M. , Hegedüšová, K. , Kráľ, P. , & Škodová, I. (2012). Ecology and distribution of Tephroseris longifolia subsp. moravica in relation to environmental variation at a micro‐scale. Biologia (Bratislava), 67, 97–109. https://doi.org/10.2478/s11756-011-0142-y DOI

Janišová, M. , Škodová, I. , & Hegedüšová, K. (2012). Reproductive biology of Tephroseris longifolia subsp. moravica, an endemic taxon of European importance. Seed Science Research, 22, 113–122. https://doi.org/10.1017/S0960258511000511 DOI

Janišová, M. , Škodová, I. , Hegedüšová, K. , & Kochjarová, J. (2017). Seed bank and seedling recruitment of endangered Tephroseris longifolia subsp. moravica (Asteraceae). Folia Geobotanica, 52, https://doi.org/10.1007/s12224-016-9275-7 DOI

Jarvis, A. , Reuter, H. I. , Nelson, A. , & Guevara, E. (2008) Hole‐filled seamless SRTM Data V4. International Centre for Tropical Agriculture (CIAT). Retrieved from http://srtm.csi.cgiar.org.

Király G. (Ed.) (2007). Vörös Lista. A magyarországi edényes flóra veszélyeztetett fajai. Sopron: Saját kiadás.

Klein Tank, A. M. G. , & Können, G. P. (2003). Trends in indices of daily temperature and precipitation extremes in Europe, 1946–99. Journal of Climate, 16, 3665–3680. https://doi.org/10.1175/1520-0442(2003)016<3665:TIIODT>2.0.CO DOI

Kolanowska, M. , Grochocka, E. , & Konowalik, K. (2017). Phylogenetic climatic niche conservatism and evolution of climatic suitability in Neotropical Angraecinae (Vandeae, Orchidaceae) and their closest African relatives. PeerJ, 5, e3328 https://doi.org/10.7717/peerj.3328 PubMed DOI PMC

Kozak, K. H. , & Wiens, J. J. (2006). Does niche conservatism promote speciation? A case study in North American salamanders. Evolution, 60, 2604–2621. https://doi.org/10.1111/j.0014-3820.2006.tb01893.x PubMed DOI

Kreuzer, M. , Tribsch, A. , & Nyffeler, R. (2014). Ecological and genetic differentiation of two subspecies of Saussurea alpina in the Western Alps. Alpine Botany, 124, 49–58. https://doi.org/10.1007/s00035-014-0128-9 DOI

Lavergne, S. , Thompson, J. D. , Garnier, E. , & Debussche, M. (2004). The biology and ecology of narrow endemic and widespread plants: A comparative study of trait variation in 20 congeneric pairs. Oikos, 107, 505–518. https://doi.org/10.1111/j.0030-1299.2004.13423.x DOI

Levins, R. , & Lewontin, R. C. (1985). The dialectical biologist. Cambridge: Harvard University Press.

López‐Sepúlveda, P. , Tremetsberger, K. , Ángeles Ortiz, M. , Baeza, C. M. , Peñailillo, P. , & Stuessy, T. F. (2013). Radiation of the Hypochaeris apargioides complex (Asteraceae: Cichorieae) of southern South America. Taxon, 62, 550–564. https://doi.org/10.12705/623.14 DOI

Martín‐Bravo, S. , Valcárcel, V. , Vargas, P. , & Luceño, M. (2010). Geographical speciation related to Pleistocene range shifts in the western Mediterranean mountains (Reseda sect. Glaucoreseda, Resedaceae). Taxon, 59, 466–482.

Matesanz, S. , Valladares, F. , & Escudero, A. (2009). Functional ecology of a narrow endemic plant and a widespread congener from semiarid Spain. Journal of Arid Environments, 73, 784–794. https://doi.org/10.1016/j.jaridenv.2009.03.009 DOI

Médail, F. , & Verlaque, R. (1997). Ecological characteristics and rarity of endemic plants from southeast France and Corsica: Implications for biodiversity conservation. Biological Conservation, 80, 269–281. https://doi.org/10.1016/S0006-3207(96)00055-9 DOI

Meindl, C. (2011). New aspects in plant conservation – Phylogeography, population dynamics, genetics and management of steppe plants in Bavaria. PhD Thesis, University of Regensburg, Regensburg.

Mitchell, T. D. , Carter, T. R. , Jones, P. D. , Hulme, M. , & New, M. (2004) A comprehensive set of high‐resolution grids of monthly climate for Europe and the globe: The observed record (1901–2000) and 16 scenarios (2001–2100). Tyndall Centre Working Paper No. 55, 1–30.

Moser, D. , Gygax, A. , Bäumler, B. , Wyler, N. , & Palese, R. (2002). Rote Liste der gefährdeten Farn‐ und Blütenpflanzen der Schweiz. Bern: BUWAL.

Niklfeld, H. , & Schratt‐Ehrendorfer, L. (1999). Rote Liste gefährdeter Farn‐ und Blütenpflanzen (Pteridophyta und Spermatophyta) Österreichs. Grüne Reihe des Bundesministerium für Umwelt, Jugend und Familie, 10, 33–152.

Normand, S. , Ricklefs, R. E. , Skov, F. , Bladt, J. , Tackenberg, O. , & Svenning, J.‐C. (2011). Postglacial migration supplements climate in determining plant species ranges in Europe. Proceedings of the Royal Society B: Biological Sciences, 278, 3644–3653. https://doi.org/10.1098/rspb.2010.2769 PubMed DOI PMC

Olšavská, K. , Šingliarová, B. , Kochjarová, J. , Labdíková, Z. , Škodová, I. , Hegedüšová, K. , & Janišová, M. (2015). Exploring patterns of variation within central‐european Tephroseris longifolia agg. (Asteraceae): Karyological and morphological study. Preslia, 87, 163–194.

Pannek, A. , Ewald, J. , & Diekmann, M. (2013). Resource‐based determinants of range sizes of forest vascular plants in Germany. Global Ecology and Biogeography, 22, 1019–1028. https://doi.org/10.1111/geb.12055 DOI

Parker, K. C. (1988). Environmental relationships and vegetation associations of columnar cacti in the northern Sonora desert. Vegetatio, 78, 125–140. https://doi.org/10.1007/BF00033422 DOI

Pecinka, A. , Suchánková, P. , Lysak, M. A. , Trávníček, B. , & Doležel, J. (2006). Nuclear DNA content variation among central European Koeleria taxa. Annals of Botany, 98, 117–122. https://doi.org/10.1093/aob/mcl077 PubMed DOI PMC

Petit, R. J. , Aguinagalde, I. , de Beaulieu, J.‐L. , Bittkau, C. , Brewer, S. , Cheddadi, R. , … Vendramin, G. G. (2003). Glacial refugia: Hotspots but not melting pots of genetic diversity. Science, 300, 1563–1565. https://doi.org/10.1126/science.1083264 PubMed DOI

Pflugbeil, G. (2012). Population genetic and morphological studies in a hybrid zone between two subspecies of Tephroseris helenitis (L.) B. Nord. (Asteraceae) at the northern fringe of the Alps. MSc Thesis, University of Salzburg, Salzburg.

Pignatti, S. , Guarino, R. , La Rosa, M. (in press). Flora d'Italia (2nd edn). Bologna: Edagricole‐Tecniche Nuove.

Polechová, J. , & Storch, D. (2008). Ecological niche In Jørgensen S. E. & Fath B. D. (Eds.), Encyclopedia of ecology (pp. 1088–1097). Oxford: Elsevier; https://doi.org/10.1016/B978-008045405-4.00811-9 DOI

Prinzing, A. , Durka, W. , Klotzand, S. , & Brandl, R. (2001). The niche of higher plants: Evidence for phylogenetic conservatism. Proceedings of the Royal Society B: Biological Sciences, 268, 2383–2389. https://doi.org/10.1098/rspb.2001.1801 PubMed DOI PMC

Rissler, L. J. , & Apodaca, J. J. (2007). Adding more ecology into species delimitation: Ecological niche models and phylogeography help define cryptic species in the black salamander (Aneides flavipunctatus). Systematic Biology, 56, 924–942. https://doi.org/10.1080/10635150701703063 PubMed DOI

Šingliarová, B. , Olšavská, K. , Kochjarová, J. , Labdíková, Z. , & Janišová, M. (2013). Exploring patterns of variation within Tephroseris longifolia agg. (Asteraceae). Acta Biologica Cracoviensia Series Botanica, 55(Suppl. 1), 68.

Stebbins, G. L. (1980). Rarity of plant species: A synthetic viewpoint. Rhodora, 82, 77–86.

The Plant List . (2013) A working list of all plant species. Retrieved from http://www.theplantlist.org/1.1/browse/B/.

Thompson, J. D. (1999). Population differentiation in Mediterranean plants: Insights into colonisation history and implications for species diversification. Heredity, 82, 229–236. https://doi.org/10.1038/sj.hdy.6885040 PubMed DOI

Thompson, J. D. , Lavergne, S. , Affre, L. , Gaudeul, M. , & Debussche, M. (2005). Ecological differentiation of Mediterranean endemic plants. Taxon, 54, 967–976. https://doi.org/10.2307/25065481 DOI

Tichý, L. (2002). JUICE, software for vegetation classification. Journal of Vegetation Science, 13, 451–453. https://doi.org/10.1111/j.1654-1103.2002.tb02069.x DOI

Tutin T. G., Heywood V. H., Burges N. A., Moore D. M., Valentine D. H., Walters S. M., & Webb D. A. (Eds.) (1964. –1993). Flora Europaea (Vol. 1–5). Cambridge: Cambridge University Press.

Tyurin, I. V. (1951). Contribution to the analytical methods for comparative studies of soil humus. Trudy Pochvennogo Instituta im. Dokuchaeva, 38, 5–21.

Virtanen, R. , & Crawley, M. J. (2010). Contrasting patterns in bryophyte and vascular plant species richness in relation to elevation, biomass and Soay sheep on St Kilda, Scotland. Plant Ecology & Diversity, 3, 77–85. https://doi.org/10.1080/17550874.2010.492403 DOI

Walck, J. L. , Baskin, J. M. , & Baskin, C. C. (2001). Why is Solidago shortii narrowly endemic and S. altissima geographically widespread? A comprehensive comparative study of biological traits. Journal of Biogeography, 28, 1221–1237.

Wasof, S. , Lenoir, J. , Aarrestad, P. A. , Alsos, I. G. , Armbruster, W. S. , Austrheim, G. , … Decocq, G. (2015). Disjunct populations of European vascular plant species keep the same climatic niches. Global Ecology and Biogeography, 24, 1401–1412. https://doi.org/10.1111/geb.12375 DOI

Watanabe, K. (1986). Cytogeography of the genus Eupatorium (Compositae). A review. Plant Species Biology, 1, 99–116. https://doi.org/10.1111/j.1442-1984.1986.tb00019.x DOI

Wiens, J. J. (2011). The niche, biogeography and species interactions. Philosophical Transactions of the Royal Society B: Biological Sciences, 366, 2336–2350. https://doi.org/10.1098/rstb.2011.0059 PubMed DOI PMC

Zelený, D. (2009). Co‐occurrence based assessment of species habitat specialization is affected by the size of species pool: Reply to Fridley et al. (2007). Journal of Ecology, 97, 10–17. https://doi.org/10.1111/j.1365-2745.2008.01394.x DOI

Newest 20 citations...

See more in
Medvik | PubMed

Biodiversity in mountain soils above the treeline

. 2025 Oct ; 100 (5) : 1877-1949. [epub] 20250514

Find record

Citation metrics

Logged in users only

Archiving options

Loading data ...