The hidden function of egg white antimicrobials: egg weight-dependent effects of avidin on avian embryo survival and hatchling phenotype

. 2018 Apr 09 ; 7 (4) : . [epub] 20180409

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29540428

Avidin is a key egg white antimicrobial protein with strong binding capacity for biotin, an essential growth and immune cell precursor. As such, it is assumed to have a pronounced, though still poorly explored, effect on hatchling phenotype. We tested the effect of experimentally increased egg white avidin concentration (AVIDIN+) on hatching success, chick morphology, post-hatching growth performance and innate immune function in a model bird, Japanese quail (Coturnix japonica). Probability of embryo survival in the late embryonic phase increased with increasing egg weight in control eggs, but not in AVIDIN+ eggs. Chicks hatching from lighter AVIDIN+ eggs had a shorter tarsus than chicks hatching from heavier AVIDIN+ eggs. This suggests that an increase in egg white avidin favours embryo survival in lighter eggs during late embryogenesis, but at the expense of reduced structural body size. Plasma complement activity in 6-day-old AVIDIN+ chicks decreased with increasing body mass and tarsus length; the opposite was observed in control chicks, implying that the later post-hatching innate immune function of larger chicks was compromised by an increase in egg white avidin concentration. Here, we document an important role of egg white antimicrobials in maintenance of embryo viability, avian hatchling morphology and immune phenotype.

Zobrazit více v PubMed

Aebischer N. J. (1999). Multi-way comparisons and generalized linear models of nest success: extensions of the Mayfield method. Bird Study 46, 22-31. 10.1080/00063659909477228 DOI

Bates D., Maechler M. and Bolker B. (2013). lme4: Linear mixed-effects models using S4 classes. R package version 0.999999-2. http://CRAN.R-project.org/package=lme4.

Board R. G. and Fuller R. (1974). Non-specific antimicrobial defences of avian egg, embryo andeonate. Biol. Rev. 49, 15-49. 10.1111/j.1469-185X.1974.tb01297.x PubMed DOI

Bonisoli-Alquati A., Rubolini D., Romano M., Boncoraglio G., Fasola M. and Saino N. (2007). Effects of egg albumen removal on yellow-legged gull chick phenotype. Funct. Ecol. 21, 310-316. 10.1111/j.1365-2435.2006.01226.x DOI

Bonisoli-Alquati A., Rubolini D., Romano M., Cucco M., Fasola M., Caprioli M. and Saino N. (2010). Egg antimicrobials, embryo sex and chick phenotype in the yellow-legged gull. Behav. Ecol. Sociobiol. 64, 845-855. 10.1007/s00265-010-0901-8 DOI

Bruch R. C. and White H. B. (1982). Compositional and structural heterogeneity of avidin glycopeptides. Biochemistry 21, 5334-5341. 10.1021/bi00264a033 PubMed DOI

Buchmann K. (2014). Evolution of innate immunity: clues from invertebrates via fish to mammals. Front. Immunol. 5, 8 10.3389/fimmu.2014.00459 PubMed DOI PMC

Buchtíková S., Šimková A., Rohlenova K., Flajshans M., Lojek A., Lilius E.-M. and Hyršl P. (2011). The seasonal changes in innate immunity of the common carp (Cyprinus carpio). Aquaculture 318, 169-175. 10.1016/j.aquaculture.2011.05.013 DOI

Burley R. W. and Vadehra D. V. (1989). The Avian Egg: Chemistry and Biology. London, UK: John Wiley.

Bush L. and White H. B. (1989). Avidin traps biotin diffusing out of chicken egg-yolk. Comp. Biochem. Physiol. 93, 543-547. 10.1016/0300-9629(89)90008-X PubMed DOI

Christensen V. L. (2001). Factors associated with early embryonic mortality. Worlds Poult. Sci. J. 57, 359-372. 10.1079/WPS20010025 DOI

Couch J. R., Cravens W. W., Elvehjem C. A. and Halpin J. G. (1948). Relation of carbohydrate to intestinal synthesis of biotin and hatchability in mature fowl. J. Nutr. 35, 57-72. 10.1093/jn/35.1.57 PubMed DOI

Cravens W. W., Mcgibbon W. H. and Sebesta E. E. (1944). Effect of biotin deficiency on embryonic developement in the domestic fowl. Anat. Rec. 90, 55-64. 10.1002/ar.1090900109 DOI

Dakshinamurti K. (1994). Biotin. In Modern Nutrition in Health and Disease (ed. Shils M. E., Olson J. A. and Shike M.), pp. 426-431. Philadelphia: Lea and Febiger.

Dakshinamurti K. (2003). Regulation of gene expression by biotin, vitamin B6 and vitamin C. In Molecular Nutrition (ed. Daniel H. and Zempleni J.), pp. 151-165. Oxfordshire: CABI Publishing.

Dakshinamurti K. (2005). Biotin - a regulator of gene expression. J. Nutr. Biochem. 16, 419-423. 10.1016/j.jnutbio.2005.03.015 PubMed DOI

D'Alba L. and Torres R. (2007). Seasonal egg-mass variation and laying sequence in a bird with facultative brood reduction. Auk 124, 643-652. 10.1642/0004-8038(2007)124[643:SEVALS]2.0.CO;2 DOI

D'Alba L., Shawkey M. D., Korsten P., Vedder O., Kingma S. A., Komdeur J. and Beissinger S. R. (2010). Differential deposition of antimicrobial proteins in blue tit (Cyanistes caeruleus) clutches by laying order and male attractiveness. Behav. Ecol. Sociobiol. 64, 1037-1045. 10.1007/s00265-010-0919-y PubMed DOI PMC

DeLange R. J. (1970). Egg white avidin. 1. Amino acid composition-sequence of amino-terminal and carboxyl-terminal cyanogen bromide peptides. J. Biol. Chem. 245, 907-916. PubMed

Elo H. A. and Korpela J. (1984). The occurrence and production of avidin - a new conception of the high-affinity biotin-binding protein. Comp. Biochem. Physiol. B. 78, 15-20. 10.1016/0305-0491(84)90137-8 PubMed DOI

Finkler M. S., Van Orman J. B. and Sotherland P. R. (1998). Experimental manipulation of egg quality in chickens: influence of albumen and yolk on the size and body composition of near-term embryos in a precocial bird. J. Compar. Physiol. B. 168, 17-24. 10.1007/s003600050116 PubMed DOI

Foye O. T., Ferket P. R. and Uni Z. (2007). Ontogeny of energy and carbohydrate utilisation of the precocial avian embryo and hatchling. Avian Poult. Biol. Rev. 18, 93-101. 10.3184/147020607X296033 DOI

Giansanti F., Leboffe L., Pitari G., Ippoliti R. and Antonini G. (2012). Physiological roles of ovotransferrin. BBA-Gen. Subjects 1820, 218-225. 10.1016/j.bbagen.2011.08.004 PubMed DOI

Gil D. (2003). Golden eggs: maternal manipulation of offspring phenotype by egg androgen in birds. Ardeola 50, 281-294.

Green N. M. (1975). Avidin. Adv. Protein. Chem. 29, 85-133. 10.1016/S0065-3233(08)60411-8 PubMed DOI

Grizard S., Versteegh M. A., Ndithia H. K., Salles J. F. and Tieleman B. I. (2015). Shifts in bacterial communities of eggshells and antimicrobial activities in eggs during incubation in a ground-nesting passerine. PLoS ONE 10, e0121716 10.1371/journal.pone.0121716 PubMed DOI PMC

Groothuis T. G. G. and Von Engelhardt N. (2005). Investigating maternal hormones in avian eggs: measurement, manipulation, and interpretation. Ann. NY. Acad. Sci. 1046, 168-180. 10.1196/annals.1343.014 PubMed DOI

Groothuis T. G. G., Müller W., Von Engelhardt N., Carere C. and Eising C. (2005). Maternal hormones as a tool to adjust offspring phenotype in avian species. Neurosci. Biobehav. Rev. 29, 329-352. 10.1016/j.neubiorev.2004.12.002 PubMed DOI

Hamburger V. and Hamilton H. L. (1992). A series of normal stages in the development of the chick-embryo, (reprinted from Journal of Morphology, vol 88, 1951). Dev. Dyn. 195, 231-272. 10.1002/aja.1001950404 PubMed DOI

Hasselquist D. and Nilsson J.-A. (2009). Maternal transfer of antibodies in vertebrates: trans-generational effects on offspring immunity. Philos. T. Roy. Soc. B. 364, 51-60. 10.1098/rstb.2008.0137 PubMed DOI PMC

Hill W. L. (1995). Intraspecific variation in egg composition. Wilson Bull. 107, 382-387.

Hocking P. M., Stevenson E. and Beard P. M. (2013). Supplementary biotin decreases tibial bone weight, density and strength in riboflavin-deficient starter diets for turkey poults. Brit. Poult. Sci. 54, 801-809. 10.1080/00071668.2013.860213 PubMed DOI

Hořák D. and Albrecht T. (2007). Using net sacks to examine the relationship between egg size and young size in Common Pochards. J. Field Ornithol. 78, 334-339. 10.1111/j.1557-9263.2007.00116.x DOI

Horrocks N. P. C., Hine K., Hegemann A., Ndithia H. K., Shobrak M., Ostrowski S., Williams J. B., Matson K. D. and Tieleman B. I. (2014). Are antimicrobial defences in bird eggs related to climatic conditions associated with risk of trans-shell microbial infection? Front. Zool. 11, 49 10.1186/1742-9994-11-49 PubMed DOI PMC

Hyánková L., Novotna B., Knizetova H. and Horackova S. (2004). Divergent selection for shape of growth curve in Japanese quail. 2. Embryonic development and growth. Brit. Poult. Sci. 45, 171-179. 10.1080/00071660410001715768 PubMed DOI

Hyánková L., Novotná B. and Starosta F. (2015). Divergent selection for shape of the growth curve in Japanese quail. 8. Effect of long-term selection on embryonic development and growth. Brit. Poult. Sci. 56, 184-194. 10.1080/00071668.2014.1000823 PubMed DOI

Ishaq H. M., Akram M., Baber M. E., Jatoi A. S., Sahota A. W., Javed K., Mehmood S., Hussain J. and Husnain F. (2014). Embryonic mortality in cobb broiler breeder strain with three egg weight and storage periods at four production phases. J. Anim. Plant Sci. 24, 1623-1628.

Javŭrková V., Albrecht T., Mrázek J. and Kreisinger J. (2014). Effect of intermittent incubation and clutch covering on the probability of bacterial trans-shell infection. Ibis 156, 374-386. 10.1111/ibi.12126 DOI

Javŭrková V., Krkavcova E., Kreisinger J., Hyrsl P. and Hyankova L. (2015). Effects of experimentally increased in ovo lysozyme on egg hatchability, chicks complement activity, and phenotype in a precocial bird. J. Exp. Zool. Part A 323, 497-505. 10.1002/jez.1935 PubMed DOI

Korpela J., Kulomaa M., Tuohimaa P. and Vaheri A. (1983). Avidin is induced in chicken-embryo fibroblasts by viral transformation and cell-damage. Embo. J. 2, 1715-1719. PubMed PMC

Kriengwatana B., Wada H., Macmillan A. and MacDougall-Shackleton S. A. (2013). Juvenile nutritional stress affects growth rate, adult organ mass, and innate immune function in Zebra Finches (Taeniopygia guttata). Physiol. Biochem. Zool. 86, 769-781. 10.1086/673260 PubMed DOI

Krist M. (2011). Egg size and offspring quality: a meta-analysis in birds. Biol. Rev. 86, 692-716. 10.1111/j.1469-185X.2010.00166.x PubMed DOI

Lawrence M. A. (2012). ez: Easy analysis and visualization of factorial experiments. R package version 4.1-1. http://CRAN.R-project.org/package=ez.

Liu L., Qin D. K., Wang X. F., Feng Y., Yang X. J. and Yao J. H. (2015). Effect of immune stress on growth performance and energy metabolism in broiler chickens. Food Agr. Immunol. 26, 194-203. 10.1080/09540105.2014.882884 DOI

Manthey K. C., Griffin J. B. and Zempleni J. (2002). Biotin supply affects expression of biotin transporters, biotinylation of carboxylases and metabolism of interleukin-2 in Jurkat cells. J. Nutri. 132, 887-892. 10.1093/jn/132.5.887 PubMed DOI

Moran E. T. (2007). Nutrition of the developing embryo and hatchling. Poult. Sci. 86, 1043-1049. 10.1093/ps/86.5.1043 PubMed DOI

Mousseau T. A. and Fox C. W. (1998). The adaptive significance of maternal effects. Trends Ecol. Evol. 13, 403-407. 10.1016/S0169-5347(98)01472-4 PubMed DOI

Muniyappa K. and Adiga P. R. (1979). Isolation and characterization of thiamin-binding protein from chicken egg-white. Biochem. J. 177, 887-894. 10.1042/bj1770887 PubMed DOI PMC

Navara K. J. and Mendonca M. T. (2008). Yolk androgens as pleiotropic mediators of physiological processes: A mechanistic review. Comp. Biochem. Physiol. A. 150, 378-386. 10.1016/j.cbpa.2008.05.002 PubMed DOI

Palmer B. D. and Guillette L. J. Jr (1991). Oviductal proteins and their influence on embryonic development in birds and reptiles. In Egg Incubation: its Effects on Embryonic Development in Birds and Reptiles (ed. Ferguson M. W. J. and Deeming D. C.), pp. 29-46. Cambridge, UK: Cambridge University Press.

Pedroso A. A., Café M. B., Mogyca Leandro N. S., Stringhini J. H. and Chaves L. S. (2006). Embrionary development and hatchability of quail eggs stored for different periods and incubated at different humidity and temperatures levels. Rev. Bras. Zootecn. 35, 2344-2349. 10.1590/S1516-35982006000800021 DOI

Pinowski J., Barkowska M., Kruszewicz A. H. and Kruszewicz A. G. (1994). The causes of the mortality of eggs and nestlings of Passer spp. J. Biosci. 19, 441-451. 10.1007/BF02703180 DOI

R Core Team (2013). R: A Language and Environment for Statistical Computing. Austria: R Foundation for Statistical Computing; ISBN 3-900051-07-0. http://www.R-project.org/.

Saino N., Dall'ara P., Martinelli R. and Møller A. P. (2002). Early maternal effects and antibacterial immune factors in the eggs, nestlings and adults of the barn swallow. J. Evol. Biol. 15, 735-743. 10.1046/j.1420-9101.2002.00448.x DOI

Saino N., Martinelli R., Biard C., Gil D., Spottiswoode C. N., Rubolini D., Surai P. F. and Møller A. P. (2007). Maternal immune factors and the evolution of secondary sexual characters. Behav. Ecol. 18, 513-520. 10.1093/beheco/arm004 DOI

Schmidt K. L., Kubli S. P., MacDougall-Shackleton E. A. and MacDougall-Shackleton S. A. (2015). Early-life stress has sex-specific effects on immune function in adult Song Sparrows. Physiol. Biochem. Zool. 88, 183-194. 10.1086/680599 PubMed DOI

Schwabl H. (1993). Yolk is a source of maternal testosterone for developing birds. Proc. Natl. Acad. Sci. USA 90, 11446-11450. 10.1073/pnas.90.24.11446 PubMed DOI PMC

Schwabl H. (1996). Maternal testosterone in the avian egg enhances postnatal growth. Comp. Biochem. Physiol. A 114, 271-276. 10.1016/0300-9629(96)00009-6 PubMed DOI

Sellier N., Brun J.-M., Richard M.-M., Batellier F., Dupuy V. and Brillard J.-P. (2005). Comparison of fertility and embryo mortality following artificial insemination of common duck females (Anas platyrhynchos) with semen from common or Muscovy (Cairina moschata) drakes. Theriogenology 64, 429-439. 10.1016/j.theriogenology.2004.12.010 PubMed DOI

Shawkey M. D., Kosciuch K. L., Liu M., Rohwer F. C., Loos E. R., Wang J. M. and Beissinger S. R. (2008). Do birds differentially distribute antimicrobial proteins within clutches of eggs? Behav. Ecol. 19, 920-927. 10.1093/beheco/arn019 DOI

Sunny N. E. and Bequette B. J. (2010). Gluconeogenesis differs in developing chick embryos derived from small compared with typical size broiler breeder eggs. J. Anim. Sci. 88, 912-921. 10.2527/jas.2009-2479 PubMed DOI

Takechi R., Taniguchi A., Ebara S., Fukui T. and Watanabe T. (2008). Biotin deficiency affects the proliferation of human embryonic palatal mesenchymal cells in culture. J. Nutr. 138, 680-684. 10.1093/jn/138.4.680 PubMed DOI

Taniguchi A. and Watanabe T. (2007). Roles of biotin in growing ovarian follicles and embryonic development in domestic fowl. J. Nutr. Sci. Vitaminol. 53, 457-463. 10.3177/jnsv.53.457 PubMed DOI

Valenciano A. I., Mayordomo R., de la Rosa E. J. and Hallbook F. (2002). Biotin decreases retinal apoptosis and induces eye malformations in the early chick embryo. Neuroreport 13, 297-299. 10.1097/00001756-200203040-00010 PubMed DOI

Wang X. F., Li Y. L., Shen J., Wang S. Y., Yao J. H. and Yang X. J. (2015). Effect of Astragalus polysaccharide and its sulfated derivative on growth performance and immune condition of lipopolysaccharide-treated broilers. Int. J. Biol. Macromol. 76, 188-194. 10.1016/j.ijbiomac.2015.02.040 PubMed DOI

Watanabe T. (1993). Dietary biotin deficiency affects reproductive function and prenatal development in hamsters. J. Nutr. 123, 2101-2108. PubMed

Watanabe T., Nagai Y., Taniguchi A., Ebara S., Kimura S. and Fukui T. (2009). Effects of biotin deficiency on embryonic development in mice. Nutrition 25, 78-84. 10.1016/j.nut.2008.06.031 PubMed DOI

Watkins B. A. (1989). Influences of biotin deficiency and dietary trans-fatty acids on tissue-lipids in chickens. Brit. J. Nutr. 61, 99-111. 10.1079/BJN19890096 PubMed DOI

Wellman-Labadie O., Picman J. and Hincke M. T. (2008). Comparative antibacterial activity of avian egg white protein extracts. Brit. Poult. Sci. 49, 125-132. 10.1080/00071660801938825 PubMed DOI

White H. B. and Merrill A. H. (1988). Riboflavin-binding proteins. Ann. Rev. Nutr. 8, 279-299. 10.1146/annurev.nu.08.070188.001431 PubMed DOI

White H. B. and Whitehead C. C. (1987). Role of avidin and other biotin-binding proteins in the deposition and distribution of biotin in chicken eggs - discovery of a new biotin-binding protein. Biochem. J. 241, 677-684. 10.1042/bj2410677 PubMed DOI PMC

White H. B., Orth W. H., Schreiber R. W. and Whitehead C. C. (1992). Availability of avidin-bound biotin to the chicken-embryo. Arch. Biochem. Biophys. 298, 80-83. 10.1016/0003-9861(92)90096-F PubMed DOI

Whitehead C. C., Pearson R. A. and Herron K. M. (1985). Biotin requirements of broiler breeders fed diets of different protein-content and effect of insufficient biotin on the viability of progeny. Brit. Poult. Sci. 26, 73-82. 10.1080/00071668508416789 PubMed DOI

Williams T. D. (1994). Intraspecific variation in egg size and egg composition in birds - effects on offspring fitness. Biol. Rev. Camb. Philos. 69, 35-59. 10.1111/j.1469-185X.1994.tb01485.x PubMed DOI

Zempleni J., Wijeratne S. S. K. and Hassan Y. I. (2009). Biotin. Biofactors 35, 36-46. 10.1002/biof.8 PubMed DOI PMC

Zerega B., Camardella L., Cermelli S., Sala R., Cancedda R. and Cancedda F. D. (2001). Avidin expression during chick chondrocyte and myoblast development in vitro and in vivo: regulation of cell proliferation. J. Cell Sci. 114, 1473-1482. PubMed

Zheng X. C., Wu Q. J., Song Z. H., Zhang H., Zhang J. F., Zhang L. L., Zhang T. Y., Wang C. and Wang T. (2016). Effects of Oridonin on growth performance and oxidative stress in broilers challenged with lipopolysaccharide. Poult. Sci. 95, 2281-2289. 10.3382/ps/pew161 PubMed DOI

Zhu Y. W., Xie M., Huang W., Yang L. and Hou S. S. (2012). Effects of biotin on growth performance and foot pad dermatitis of starter White Pekin ducklings. Brit. Poult. Sci. 53, 646-650. 10.1080/00071668.2012.722607 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...