Electrospinning over Solvent Casting: Tuning of Mechanical Properties of Membranes

. 2018 Mar 22 ; 8 (1) : 5058. [epub] 20180322

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29568048
Odkazy

PubMed 29568048
PubMed Central PMC5864752
DOI 10.1038/s41598-018-23378-3
PII: 10.1038/s41598-018-23378-3
Knihovny.cz E-zdroje

We put forth our opinion regarding the enhanced plasticity and modulation of mechanical properties of polymeric films obtained through electrospinning process in this article. In majority of the pharmaceutical, biomedical, and packaging applications, it is desirable that polymer based matrices should be soft, flexible, and have a moderate toughness. In order to convert inflexible and brittle polymers, adjuvants in the form of plasticizers are added to improve the flexibility and smoothness of solvent casted polymer films. However, many of these plasticizers are under scrutiny for their toxic effects and environmental hazards. In addition, plasticizers also increase the cost of end products. This has motivated the scientific community to investigate alternate approaches. The changes imparted in membrane casted by electrospinning were tried to be proved by SEM, Mechanical property study, DSC and XRD studies. We have showed dramatic improvement in flexibility of poly(ε-caprolactone) based nanofiber matrix prepared by electrospinning method whereas solvent casting method without any plasticizer produced very brittle, inflexible film of PCL. Modulation capacity of mechanical properties is also recorded. We tried to support our opinion by citing several similar findings available in the open literature. The electrospinning method helps in plasticization and in tuning mechanical properties.

Zobrazit více v PubMed

Ahmed A. S., Mandal U. K.,Taher M, Susanti D., Jaffri, J. M. PVA-PEG physically cross-linked hydrogel film as a wound dressing: Experimental design and optimization. Pharm. Dev. Technol (just-accepted) 1–25 (2017). PubMed

Walicová V., Gajdziok J., Pavloková S., Vetchý D. Design and evaluation of mucoadhesive oral films containing sodium hyaluronate using multivariate data analysis. Pharm. Dev. Technol 1–8 (2016). PubMed

Ghosal K, Manakhov A, Zajíčková L, Thomas S. Structural and surface compatibility study of modified electrospun poly (ε-caprolactone)(PCL) composites for skin tissue engineering. AAPS Pharm Sci Tech. 2017;18(1):72–81. doi: 10.1208/s12249-016-0500-8. PubMed DOI

Mazza E, Ehret AE. Mechanical biocompatibility of highly deformable biomedical materials. J MechBehav Biomed Mater. 2015;48:100–24. doi: 10.1016/j.jmbbm.2015.03.023. PubMed DOI

Dhivya S, Saravanan S, Sastry TP, Selvamurugan N. Nanohydroxyapatite-reinforced chitosan composite hydrogel for bone tissue repair in vitro and in vivo. Journal of nanobiotechnology. 2015;13(1):40. doi: 10.1186/s12951-015-0099-z. PubMed DOI PMC

Ghosal K, Latha MS, Thomas S. Poly (ester amides)(PEAs)–Scaffold for tissue engineering applications. ‎Eur. Polym. J. 2014;60:58–68.

Du L, Xu H, Zhang Y, Zou F. Electrospinning of polycaprolatonenanofibers with DMF additive: The effect of solution proprieties on jet perturbation and fiber morphologies. Fiber Polym. 2016;17(5):751–9. doi: 10.1007/s12221-016-6045-3. DOI

Schilling SU, Shah NH, Malick AW, Infeld MH, McGinity JW. Citric acid as a solid‐state plasticizer for Eudragit RS PO. J. Pharm. Pharmacol. 2007;59(11):1493–500. doi: 10.1211/jpp.59.11.0005. PubMed DOI

Limpongsa E, Umprayn K. Preparation and evaluation of diltiazem hydrochloride diffusion-controlled transdermal delivery system. AAPS. Pharm. Sci. Tech. 2008;9(2):464–70. doi: 10.1208/s12249-008-9062-8. PubMed DOI PMC

Silva CL, Pereira JC, Ramalho A, Pais AA, Sousa JJ. Films based on chitosan polyelectrolyte complexes for skin drug delivery: development and characterization. Journal of Membrane Science. 2008;320(1):268–79. doi: 10.1016/j.memsci.2008.04.011. DOI

Singh N, Georget DM, Belton PS, Barker SA. Physical properties of zein films containing salicylic acid and acetyl salicylic acid. J Cereal Sci. 2010;52(2):282–7. doi: 10.1016/j.jcs.2010.06.008. DOI

Moss GP, Gullick DR, Woolfson AD, McCafferty DF. Mechanical characterization and drug permeation properties of tetracaine-loaded bioadhesive films for percutaneous local anesthesia. Drug DevInd Pharm. 2006;32(2):163–74. doi: 10.1080/03639040500466049. PubMed DOI

Singh TR, McCarron PA, Woolfson AD, Donnelly RF. Physicochemical characterization of poly (ethylene glycol) plasticized poly (methyl vinyl ether‐co‐maleic acid) films. J Appl Polymer Sci. 2009;112(5):2792–9. doi: 10.1002/app.29523. DOI

Dana SF, Nguyen DV, Kochhar JS, Liu XY, Kang L. UV-curable pressure sensitive adhesive films: effects of biocompatible plasticizers on mechanical and adhesion properties. Soft Matter. 2013;9(27):6270–81. doi: 10.1039/c3sm50879j. DOI

Alanazi FK, Rahman AA, Mahrous GM, Alsarra IA. Formulation and physicochemical characterisation of buccoadhesive films containing ketorolac. J. Drug. Deliv Sci. Tec. 2007;17(3):183–92. doi: 10.1016/S1773-2247(07)50034-1. DOI

Lim H, Hoag SW. Plasticizer effects on physical–mechanical properties of solvent cast Soluplus® films. Aaps Pharm sci tech. 2013;14(3):903–10. doi: 10.1208/s12249-013-9971-z. PubMed DOI PMC

Ghosal K, Thomas S, Kalarikkal N, Gnanamani A. Collagen coated electrospun polycaprolactone (PCL) with titanium dioxide (TiO2) from an environmentally benign solvent: preliminary physico-chemical studies for skin substitute. J Polym Res. 2014;1(21(5)):410. doi: 10.1007/s10965-014-0410-y. DOI

Dobaria NB, Badhan AC, Mashru RC. A novel itraconazolebioadhesive film for vaginal delivery: design, optimization, and physicodynamic characterization. AapsPharmscitech. 2009;10(3):951. PubMed PMC

Rechia LM, Morona JB, Zepon KM, Soldi V, Kanis LA. Mechanical properties and total hydroxycinnamic derivative release of starch/glycerol/Melissa officinalis extract films. Braz. J. Pharm. Sci. 2010;46(3):491–7. doi: 10.1590/S1984-82502010000300012. DOI

deBritto D, de Rizzo JS, Assis OB. Effect of Carboxymethylcellulose and Plasticizer Concentration on Wetting and Mechanical Properties of Cashew Tree Gum–Based Films. Int J Polym Anal Ch. 2012;17(4):302–11. doi: 10.1080/1023666X.2012.668449. DOI

Wei X, Xia Z, Wong S-C, Baji A. “Modelling of mechanical properties of electrospun nanofibre network”. International Journal of Experimental and Computational Biomechanics. 2009;1(1):45–57. doi: 10.1504/IJECB.2009.022858. DOI

Baji A, Mai Y-W, Wong S-C, Abtahi M, Chen P. “Electrospinning of polymer nanofibers: effects on oriented morphology, structures and tensile properties”. Composites Science and Technology. 2010;70(5):703–718. doi: 10.1016/j.compscitech.2010.01.010. DOI

Zhang M, Atkinson KR, Baughman RH. “Multifunctional carbon nanotube yarns by downsizing an ancient technology”. Science. 2004;306(5700):1358–1361. doi: 10.1126/science.1104276. PubMed DOI

Ramdhanie LI, et al. Thermal and mechanical characterization of electrospun blends of poly (lactic acid) and poly (glycolic acid) Polymer journal. 2006;38(11):1137–1145. doi: 10.1295/polymj.PJ2006062. DOI

Lee KH, Kim HY, Khil MS, Ra YM, Lee DR. Characterization of nano-structured poly (ε-caprolactone) nonwoven mats via electrospinning. Polymer. 2003;44(4):1287–1294. doi: 10.1016/S0032-3861(02)00820-0. DOI

Zhu Y, Shah NH, Malick AW, Infeld MH, McGinity JW. Solid-state plasticization of an acrylic polymer with chlorpheniramine maleate and triethyl citrate. Int. J. Pharm. 2002;241(2):301–10. doi: 10.1016/S0378-5173(02)00244-2. PubMed DOI

Rabek CL, Stelle RV, Dziubla TD, Puleo DA. The effect of plasticizers on the erosion and mechanical properties of polymeric films. J. Biomater. Appl. 2014;28(5):779–89. doi: 10.1177/0885328213480979. PubMed DOI PMC

Honary S, Orafai H. The effect of different plasticizer molecular weights and concentrations on mechanical and thermomechanical properties of free films. Drug DevInd Pharm. 2002;28(6):711–5. doi: 10.1081/DDC-120003863. PubMed DOI

Taepaiboon P, Rungsardthong U, Supaphol P. Vitamin-loaded electrospun cellulose acetate nanofiber mats as transdermal and dermal therapeutic agents of vitamin A acid and vitamin E. Eur. J. Pharm. Biopharm. 2007;67(2):387–97. doi: 10.1016/j.ejpb.2007.03.018. PubMed DOI

Thomas V, Zhang X, Catledge SA, Vohra YK. Functionally graded electrospun scaffolds with tunable mechanical properties for vascular tissue regeneration. Biomed. Mater. 2007;2(4):224. doi: 10.1088/1748-6041/2/4/004. PubMed DOI

Bölgen N., Menceloğlu Y. Z., Acatay K., Vargel I., Pişkin E. In vitro and in vivo degradation of non-woven materials made of poly (ε-caprolactone) nanofibers prepared by electrospinning under different conditions. J. Biomater. Sci. Polym. Ed. 16(12), 1537–55 (2005). PubMed

Saha, K., Butola, B. S., Joshi, M. Drug release behavior of polyurethane/clay nanocomposite: Film vs. nanofibrous web. J Appl Polymer Sci. 131(19) (2014 Oct 5).

Tyagi C, et al. Electrospun nanofiber matrix with a mucoadhesive backing film for oramucosal drug delivery. Int. J. Mat. MechManufact. 2014;2:81–5.

Fabra MJ, Lopez-Rubio A, Lagaron JM. High barrier polyhydroxyalcanoate food packaging film by means of nanostructured electrospun interlayers of zein. Food Hydrocoll. 2013;32(1):106–14. doi: 10.1016/j.foodhyd.2012.12.007. DOI

Yin C, Jatoi AW, Bang H, Gopiraman M, Kim IS. Fabrication of silk fibroin based three dimensional scaffolds for tissue engineering. Fiber Polym. 2016;17(8):1140–5. doi: 10.1007/s12221-016-5852-x. DOI

Li Y, Thouas GA, Chen Q. Novel elastomeric fibrous networks produced from poly (xylitol sebacate) 2:5 by core/shell electrospinning: Fabrication and mechanical properties. J MechBehav. Biomed Mater. 2014;40:210–21. PubMed

Rizvi MS, Pal A. Statistical model for the mechanical behavior of the tissue engineering non-woven fibrous matrices under large deformation. J. Mech Behav Biomed Mater. 2014;37:235–50. doi: 10.1016/j.jmbbm.2014.05.026. PubMed DOI

Ranjbar-Mohammadi M, Kargozar S, Bahrami SH, Joghataei MT. Fabrication of curcumin-loaded gum tragacanth/poly (vinyl alcohol) nanofibers with optimized electrospinning parameters. J. Ind. Text. 2017;46(5):1170–1192. doi: 10.1177/1528083715613631. DOI

Tonglairoum P, Ngawhirunpat T, Rojanarata T, Opanasopit P. Lysozyme-immobilized electrospun PAMA/PVA and PSSA-MA/PVA ion-exchange nanofiber for wound healing. Pharm. Dev. Technol. 2015;20(8):976–983. doi: 10.3109/10837450.2014.954726. PubMed DOI

Ngawhirunpat T, et al. Development of meloxicam-loaded electrospun polyvinyl alcohol mats as a transdermal therapeutic agent. Pharm. Dev. Technol. 2009;14(1):73–82. doi: 10.1080/10837450802409420. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace