Real-time distribution of pelagic fish: combining hydroacoustics, GIS and spatial modelling at a fine spatial scale
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29599464
PubMed Central
PMC5876353
DOI
10.1038/s41598-018-23762-z
PII: 10.1038/s41598-018-23762-z
Knihovny.cz E-zdroje
- MeSH
- akustika MeSH
- ekosystém MeSH
- geografické informační systémy MeSH
- monitorování životního prostředí MeSH
- populační dynamika MeSH
- prostorová analýza * MeSH
- ryby fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Understanding spatial distribution of organisms in heterogeneous environment remains one of the chief issues in ecology. Spatial organization of freshwater fish was investigated predominantly on large-scale, neglecting important local conditions and ecological processes. However, small-scale processes are of an essential importance for individual habitat preferences and hence structuring trophic cascades and species coexistence. In this work, we analysed the real-time spatial distribution of pelagic freshwater fish in the Římov Reservoir (Czechia) observed by hydroacoustics in relation to important environmental predictors during 48 hours at 3-h interval. Effect of diurnal cycle was revealed of highest significance in all spatial models with inverse trends between fish distribution and predictors in day and night in general. Our findings highlighted daytime pelagic fish distribution as highly aggregated, with general fish preferences for central, deep and highly illuminated areas, whereas nighttime distribution was more disperse and fish preferred nearshore steep sloped areas with higher depth. This turnover suggests prominent movements of significant part of fish assemblage between pelagic and nearshore areas on a diel basis. In conclusion, hydroacoustics, GIS and spatial modelling proved as valuable tool for predicting local fish distribution and elucidate its drivers, which has far reaching implications for understanding freshwater ecosystem functioning.
Faculty of Economics University of South Bohemia České Budějovice Czech Republic
Faculty of Science University of South Bohemia České Budějovice Czech Republic
Fisheries and Oceans Canada Gulf Fisheries Centre Moncton Canada
Zobrazit více v PubMed
Levi SA. The patterns and scale in ecology. Ecology. 1992;73:1943–1967. doi: 10.2307/1941447. DOI
Parker GA, Smith JM. Optimal theory in evolutionary biology. Nature. 1990;348:27–33. doi: 10.1038/348027a0. DOI
Mullon C, Freon P, Cury P. The dynamics of collapse in world fisheries. Fish and fisheries. 2005;6:111–120. doi: 10.1111/j.1467-2979.2005.00181.x. DOI
Edwards M, Richardson AJ. Impact of climate change on marine pelagic phenology and trophic mismatch. Nature. 2004;430:881–884. doi: 10.1038/nature02808. PubMed DOI
Sims DW, et al. Hunt warm, rest cool: bioenergetic strategy underlying diel vertical migration of a benthic shark. Journal of Animal Ecology. 2006;75:176–190. doi: 10.1111/j.1365-2656.2005.01033.x. PubMed DOI
Bohl E. Diel pattern of pelagic distribution and feeding in planktivorous fish. Oecologia. 1980;44(3):368–375. doi: 10.1007/BF00545241. PubMed DOI
Diehl S, Eklöv P. Effects of piscivore-mediated habitat use on resources, diet and growth of perch. Ecology. 1995;76(6):1712–1726. doi: 10.2307/1940705. DOI
Persson L, De Roos AM. Mixed competition–predation: potential vs. realized interactions. Journal of Animal Ecology. 2012;81:483–493. doi: 10.1111/j.1365-2656.2011.01927.x. PubMed DOI
Fodrie FJ, et al. Measuring individuality in habitat use across complex landscapes: approaches, constraints, and implications for assessing resource specialization. Oecologia. 2015;178:75–87. doi: 10.1007/s00442-014-3212-3. PubMed DOI
Barra, M. et al. Interannual Changes in Biomass Affect the Spatial Aggregations of Anchovy and Sardine as Evidenced by Geostatistical and Spatial Indicators. Plos One10, 10.1371/journal.pone.0135808 (2015). PubMed PMC
Fernando CH, Holčík J. Fish in Reservoirs. Int. Revue ges. Hydrobiol. 1991;76:149–167. doi: 10.1002/iroh.19910760202. DOI
Shurin JB, et al. A cross-ecosystem comparison of the strength of trophic cascades. Ecology Letters. 2002;5:785–791. doi: 10.1046/j.1461-0248.2002.00381.x. DOI
Mehner T, Hölker F, Kasprzak P. Spatial and temporal heterogeneity of trophic variables in a deep lake as reflected by repeated singular samplings. Oikos. 2005;108:401–409. doi: 10.1111/j.0030-1299.2005.13338.x. DOI
Muška M, et al. The last snapshot of natural pelagic fish assemblage in Lake Turkana, Kenya: A hydroacoustic study. Journal of Great Lakes Research. 2012;38:98–106.
Vašek M, et al. Fish community response to the longitudinal environmental gradient in Czech deep-valley reservoirs: Implications for ecological monitoring and management. Ecological Indicators. 2016;63:219–230. doi: 10.1016/j.ecolind.2015.11.061. DOI
van Moorter B, et al. Understanding scales of movement: animals ride waves and ripples of environmental change. Journal of Animal Ecology. 2013;82:770–780. doi: 10.1111/1365-2656.12045. PubMed DOI
Schindler DE, Scheuerell MD. Habitat Coupling in Lake Ecosystems. Oikos. 2002;98:177–189. doi: 10.1034/j.1600-0706.2002.980201.x. DOI
George D, Winfield I. Factors influencing the spatial distribution of zooplankton and fish in Loch Ness, UK. Freshwater Biology. 2000;43:557–570. doi: 10.1046/j.1365-2427.2000.00539.x. DOI
Jeppesen E, et al. Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia. 1997;342/343:151–164. doi: 10.1023/A:1017046130329. DOI
Sierszen ME, et al. Depth gradients in food-web processes linking habitats in large lakes: Lake Superior as an exemplar ecosystem. Freshwater Biology. 2014;59:2122–2136. doi: 10.1111/fwb.12415. DOI
Simmonds, E. J. & MacLennan, D. N. Fisheries Acoustics: Theory and Practice. (Blackwell Publishing, 2005).
Pollom, R. A. & Rose, G. A. A global review of the spatial, taxonomic, and temporal scope of freshwater fisheries hydroacoustics research. Environmental Reviews, 1–15 (2016).
Saraux C, et al. Spatial Structure and Distribution of Small Pelagic Fish in the Northwestern Mediterranean Sea. PLoS ONE. 2014;9:e111211. doi: 10.1371/journal.pone.0111211. PubMed DOI PMC
Rinke K, et al. Lake-wide distributions of temperature, phytoplankton, zooplankton, and fish in the pelagic zone of a large lake. Limnology and Oceanography. 2009;54:1306–1322. doi: 10.4319/lo.2009.54.4.1306. DOI
Brosse S, Lek S, Dauba F. Predicting fish distribution in a mesotrophic lake by hydroacoustic survey and artificial neural networks. Limnol. Oceanogr. 1999;45:1293–1303. doi: 10.4319/lo.1999.44.5.1293. DOI
Beale CM, Lennon JJ, Brewer MJ, Elston DA. Regression analysis of spatial data. Ecology Letters. 2010;13:246–264. doi: 10.1111/j.1461-0248.2009.01422.x. PubMed DOI
Legendre P. Spatial Autocorrelation: Trouble or New Paradigm? Ecology. 1993;74:1659–1673. doi: 10.2307/1939924. DOI
Kühn I. Incorporating spatial autocorrelation may invert observed patterns. Diversity and Distributions. 2007;13:66–69.
Dormann FC, et al. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography. 2007;30:609–628. doi: 10.1111/j.2007.0906-7590.05171.x. DOI
Anselin L, Syabri I, Kho Y. GeoDa: An Introduction to Spatial Data Analysis. Geographical Analysis. 2006;38:5–22. doi: 10.1111/j.0016-7363.2005.00671.x. DOI
Říha M, et al. Patterns in diel habitat use of fish covering the littoral and pelagic zones in a reservoir. Hydrobiologia. 2015;747:111–131. doi: 10.1007/s10750-014-2124-x. DOI
Guillard J, Brehmer P, Colon M, Guennégan Y. Three dimensional characteristics of young–of–year pelagic fish schools in lake. Aquat. Living Resour. 2006;19:115–122. doi: 10.1051/alr:2006011. DOI
Mrkvička T, Muška M, Kubečka J. Two step estimation for Neyman-Scott point process with inhomogeneous cluster centers. Statistics and Computing. 2014;24:91–100. doi: 10.1007/s11222-012-9355-3. DOI
Milne SW, Shuter BJ, Sprules WG. The schooling and foraging ecology of lake herring (Coregonus artedi) in Lake Opeongo, Ontario, Canada. Canadian Journal of Fisheries and Aquatic Sciences. 2005;62:1210–1218. doi: 10.1139/f05-030. DOI
Johannes MRS. Prey aggregation is correlated with increased predation pressure in lake fish communities. Canadian Journal of Fisheries and Aquatic Sciences. 1993;50:66–73. doi: 10.1139/f93-008. DOI
Pitcher TJ, Magurran AE, Winfield IJ. Fish in larger shoals find food faster. Behavioral Ecology and Sociobiology. 1982;10:149–151. doi: 10.1007/BF00300175. DOI
Whitney RR. Schooling of fishes relative to available light. Transactions of the American Fisheries Society. 1969;98:497–504. doi: 10.1577/1548-8659(1969)98[497:SOFRTA]2.0.CO;2. DOI
Borcard D, Legendre P, Avois-Jacquet C, Tuomisto H. Dissecting the spatial structure of ecological data at multiple scales. Ecology. 2004;85:1826–1832. doi: 10.1890/03-3111. DOI
Čech M, Kubečka J. Sinusoidal cycling swimming pattern of reservoir fishes. Journal of Fish Biology. 2002;61:456–471. doi: 10.1111/j.1095-8649.2002.tb01577.x. DOI
Comeau S, Boisclair D. Day-to-day variation in fish horizontal migration and its potential consequence on estimates of trophic interactions in lakes. Fish. Res. 1998;35:75–81. doi: 10.1016/S0165-7836(98)00061-7. DOI
Gido KB, Matthews WJ, Montgomery WL. Dynamics of the Offshore Fish Assemblage in a Southwestern Reservoir (Lake Texoma, Oklahoma, Texas) Copeia. 2000;2000:917–930. doi: 10.1643/0045-8511(2000)000[0917:DOTOFA]2.0.CO;2. DOI
Yule D, et al. Can pelagic forage fish and spawning cisco (Coregonus artedi) biomass in the western arm of Lake Superior be assessed with a single summer survey? Fisheries Research. 2009;96:39–50. doi: 10.1016/j.fishres.2008.09.012. DOI
Prchalová M, et al. Fish activity as determined by gillnet catch: A comparison of two reservoirs of different turbidity. Fish. Res. 2010;102:291–296. doi: 10.1016/j.fishres.2009.12.011. DOI
Helfman GSTA. and Temporal Structure in FreshwaterFish Community. Can. J. Fish. Aquat. Sci. 1981;38:1405–1420. doi: 10.1139/f81-187. DOI
Draštík V, et al. Hydroacoustic estimates of fish stocks in temperate reservoirs: day or night surveys? Aquatic Living Resources. 2009;22:69–77. doi: 10.1051/alr/2009013. DOI
Vašek M, et al. The use of pelagic habitat by cyprinids in a deep riverine impoundment: Římov Reservoir, Czech Republic. Folia Zool. 2008;57(3):324–336.
Vašek M, Kubečka J. In situ diel patterns of zooplankton consumption by subadult/adult roach Rutilus rutilus, bream Abramis brama, and bleak Alburnus alburnus. Folia Zool. 2004;53:203–214.
Romare P, Berg S, Lauridsen T, Jeppesen E. Spatial and temporal distribution of fish and zooplankton in a shallow lake. Freshwater Biology. 2003;48:1353–1362. doi: 10.1046/j.1365-2427.2003.01081.x. DOI
Hölker F, et al. Species-specific responses of planktivorous fish to the introduction of a new piscivore: implications for prey fitness. Freshwater Biology. 2007;52:1793–1806. doi: 10.1111/j.1365-2427.2007.01810.x. DOI
Nilsson PA, Brönmark C. Prey vulnerability to a gape-size limited predator: behavioural and morphological impacts on northern pike piscivory. Oikos. 2000;88:539–546. doi: 10.1034/j.1600-0706.2000.880310.x. DOI
Turner GF, Pitcher TJ. Attac abatement - A model for group protection by combined avoidance and dilution. American Naturalist. 1986;128:228–240. doi: 10.1086/284556. DOI
Richmond H, Hrabik T, Mensinger A. Light intensity, prey detection and foraging mechanisms of age 0 year yellow perch. Journal of Fish Biology. 2004;65:195–205. doi: 10.1111/j.0022-1112.2004.00444.x. DOI
Jarolím O, et al. Sinusoidal swimming in fishes: the role of season, density of large zooplankton, fish length, time of the day, weather condition and solar radiation. Hydrobiologia. 2010;654:253–265. doi: 10.1007/s10750-010-0398-1. DOI
Heege T, Appenzeller AR. Corelation of large-scale patterns of turbidity and pelagic fish biomass using satellite and acoustic methods. Arch. Hydrobiol. Spec. Issues Advanc. Limnol. 1998;53:489–503.
Jacobsen L, Berg S, Jepsen N, Skov C. Does roach behaviour differ between shallow lakes of different environmental state? Journal of Fish Biology. 2004;65(1):135–147. doi: 10.1111/j.0022-1112.2004.00436.x. DOI
De Robertis A, Ryer CH, Veloza A, Brodeur RD. Differential effects of turbidity on prey consumption of piscivorous and planktivorous fish. Canadian Journal of Fisheries and Aquatic Sciences. 2003;60(12):1517–1526. doi: 10.1139/f03-123. DOI
Scheuerell MD, Schindler DE. Changes in the Spatial Distribution of Fishes in Lakes Along a Residential Development Gradient. Ecosystems. 2004;7:98–106. doi: 10.1007/s10021-003-0214-0. DOI
Kubečka J, Wittingerová M. Horizontal beaming as a crucial component of acoustic fish stock assessment in freshwater reservoirs. Fish. Res. 1998;35:99–106. doi: 10.1016/S0165-7836(98)00064-2. DOI
Zamora L, Moreno-Amich R. Quantifying the activity and movement of perch in a temperate lake by integrating acoustic telemetry and a geographic information system. Hydrobiologia. 2002;483:209–218. doi: 10.1023/A:1021396016424. DOI
Muška M, et al. To migrate, or not to migrate: partial diel horizontal migration of fish in a temperate freshwater reservoir. Hydrobiologia. 2013;707:17–28. doi: 10.1007/s10750-012-1401-9. DOI
Bonanno A, et al. Habitat Selection Response of Small Pelagic Fish in Different Environments. Two Examples from the Oligotrophic Mediterranean Sea. PLoS ONE. 2014;9:e101498. doi: 10.1371/journal.pone.0101498. PubMed DOI PMC
Drastik V, et al. Fish hydroacoustic survey standardization: A step forward based on comparisons of methods and systems from vertical surveys of a large deep lake. Limnology and Oceanography-Methods. 2017;15:836–846. doi: 10.1002/lom3.10202. DOI
Morfin M, Fromentin J-M, Jadaud A, Bez N. Spatio-Temporal Patterns of Key Exploited Marine Species in the Northwestern Mediterranean Sea. PLoS ONE. 2012;7:e37907. doi: 10.1371/journal.pone.0037907. PubMed DOI PMC
Foote KG, Knudsen HP, Vestnes G, MacLennan DN, Simmonds EJ. Calibration of acoustic instruments for fish density estimation. ICES Coop. Rep. 1987;144:1–70.
Balk H, Lindem T. Improved fish detection probability in data from split-beam sonar. Aquatic Living Resources. 2000;13:297–303. doi: 10.1016/S0990-7440(00)01079-2. DOI
CEN (European Committee for Standardization). CEN/TC 230 EN 15910. Guidance on the estimation of fish abundance with mobile hydroacoustic methods. (CEN, 2014).
Seda J, Petrusek A, Machacek J, Smilauer P. Spatial distribution of the Daphnia longispina species complex and other planktonic crustaceans in the heterogeneous environment of canyon-shaped reservoirs. Journal of Plankton Research. 2007;29:619–628. doi: 10.1093/plankt/fbm044. DOI
fields: Tools for spatial data v. R package version 9.0 (2015).
Moran PAP. Notes on continuous stochastic phenomena. Biometrika. 1950;37:17–23. doi: 10.1093/biomet/37.1-2.17. PubMed DOI
R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2015).
Bjornstad ON, Falck W. Nonparametric spatial covariance functions: Estimation and testing. Environmental and Ecological Statistics. 2001;8:53–70. doi: 10.1023/A:1009601932481. DOI
Abdi, H. In Encyclopedia of Measurement and Statistics (ed. N. J. Salkind) (SAGE Publications, Inc., 2007).