Real-time distribution of pelagic fish: combining hydroacoustics, GIS and spatial modelling at a fine spatial scale

. 2018 Mar 29 ; 8 (1) : 5381. [epub] 20180329

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29599464
Odkazy

PubMed 29599464
PubMed Central PMC5876353
DOI 10.1038/s41598-018-23762-z
PII: 10.1038/s41598-018-23762-z
Knihovny.cz E-zdroje

Understanding spatial distribution of organisms in heterogeneous environment remains one of the chief issues in ecology. Spatial organization of freshwater fish was investigated predominantly on large-scale, neglecting important local conditions and ecological processes. However, small-scale processes are of an essential importance for individual habitat preferences and hence structuring trophic cascades and species coexistence. In this work, we analysed the real-time spatial distribution of pelagic freshwater fish in the Římov Reservoir (Czechia) observed by hydroacoustics in relation to important environmental predictors during 48 hours at 3-h interval. Effect of diurnal cycle was revealed of highest significance in all spatial models with inverse trends between fish distribution and predictors in day and night in general. Our findings highlighted daytime pelagic fish distribution as highly aggregated, with general fish preferences for central, deep and highly illuminated areas, whereas nighttime distribution was more disperse and fish preferred nearshore steep sloped areas with higher depth. This turnover suggests prominent movements of significant part of fish assemblage between pelagic and nearshore areas on a diel basis. In conclusion, hydroacoustics, GIS and spatial modelling proved as valuable tool for predicting local fish distribution and elucidate its drivers, which has far reaching implications for understanding freshwater ecosystem functioning.

Zobrazit více v PubMed

Levi SA. The patterns and scale in ecology. Ecology. 1992;73:1943–1967. doi: 10.2307/1941447. DOI

Parker GA, Smith JM. Optimal theory in evolutionary biology. Nature. 1990;348:27–33. doi: 10.1038/348027a0. DOI

Mullon C, Freon P, Cury P. The dynamics of collapse in world fisheries. Fish and fisheries. 2005;6:111–120. doi: 10.1111/j.1467-2979.2005.00181.x. DOI

Edwards M, Richardson AJ. Impact of climate change on marine pelagic phenology and trophic mismatch. Nature. 2004;430:881–884. doi: 10.1038/nature02808. PubMed DOI

Sims DW, et al. Hunt warm, rest cool: bioenergetic strategy underlying diel vertical migration of a benthic shark. Journal of Animal Ecology. 2006;75:176–190. doi: 10.1111/j.1365-2656.2005.01033.x. PubMed DOI

Bohl E. Diel pattern of pelagic distribution and feeding in planktivorous fish. Oecologia. 1980;44(3):368–375. doi: 10.1007/BF00545241. PubMed DOI

Diehl S, Eklöv P. Effects of piscivore-mediated habitat use on resources, diet and growth of perch. Ecology. 1995;76(6):1712–1726. doi: 10.2307/1940705. DOI

Persson L, De Roos AM. Mixed competition–predation: potential vs. realized interactions. Journal of Animal Ecology. 2012;81:483–493. doi: 10.1111/j.1365-2656.2011.01927.x. PubMed DOI

Fodrie FJ, et al. Measuring individuality in habitat use across complex landscapes: approaches, constraints, and implications for assessing resource specialization. Oecologia. 2015;178:75–87. doi: 10.1007/s00442-014-3212-3. PubMed DOI

Barra, M. et al. Interannual Changes in Biomass Affect the Spatial Aggregations of Anchovy and Sardine as Evidenced by Geostatistical and Spatial Indicators. Plos One10, 10.1371/journal.pone.0135808 (2015). PubMed PMC

Fernando CH, Holčík J. Fish in Reservoirs. Int. Revue ges. Hydrobiol. 1991;76:149–167. doi: 10.1002/iroh.19910760202. DOI

Shurin JB, et al. A cross-ecosystem comparison of the strength of trophic cascades. Ecology Letters. 2002;5:785–791. doi: 10.1046/j.1461-0248.2002.00381.x. DOI

Mehner T, Hölker F, Kasprzak P. Spatial and temporal heterogeneity of trophic variables in a deep lake as reflected by repeated singular samplings. Oikos. 2005;108:401–409. doi: 10.1111/j.0030-1299.2005.13338.x. DOI

Muška M, et al. The last snapshot of natural pelagic fish assemblage in Lake Turkana, Kenya: A hydroacoustic study. Journal of Great Lakes Research. 2012;38:98–106.

Vašek M, et al. Fish community response to the longitudinal environmental gradient in Czech deep-valley reservoirs: Implications for ecological monitoring and management. Ecological Indicators. 2016;63:219–230. doi: 10.1016/j.ecolind.2015.11.061. DOI

van Moorter B, et al. Understanding scales of movement: animals ride waves and ripples of environmental change. Journal of Animal Ecology. 2013;82:770–780. doi: 10.1111/1365-2656.12045. PubMed DOI

Schindler DE, Scheuerell MD. Habitat Coupling in Lake Ecosystems. Oikos. 2002;98:177–189. doi: 10.1034/j.1600-0706.2002.980201.x. DOI

George D, Winfield I. Factors influencing the spatial distribution of zooplankton and fish in Loch Ness, UK. Freshwater Biology. 2000;43:557–570. doi: 10.1046/j.1365-2427.2000.00539.x. DOI

Jeppesen E, et al. Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia. 1997;342/343:151–164. doi: 10.1023/A:1017046130329. DOI

Sierszen ME, et al. Depth gradients in food-web processes linking habitats in large lakes: Lake Superior as an exemplar ecosystem. Freshwater Biology. 2014;59:2122–2136. doi: 10.1111/fwb.12415. DOI

Simmonds, E. J. & MacLennan, D. N. Fisheries Acoustics: Theory and Practice. (Blackwell Publishing, 2005).

Pollom, R. A. & Rose, G. A. A global review of the spatial, taxonomic, and temporal scope of freshwater fisheries hydroacoustics research. Environmental Reviews, 1–15 (2016).

Saraux C, et al. Spatial Structure and Distribution of Small Pelagic Fish in the Northwestern Mediterranean Sea. PLoS ONE. 2014;9:e111211. doi: 10.1371/journal.pone.0111211. PubMed DOI PMC

Rinke K, et al. Lake-wide distributions of temperature, phytoplankton, zooplankton, and fish in the pelagic zone of a large lake. Limnology and Oceanography. 2009;54:1306–1322. doi: 10.4319/lo.2009.54.4.1306. DOI

Brosse S, Lek S, Dauba F. Predicting fish distribution in a mesotrophic lake by hydroacoustic survey and artificial neural networks. Limnol. Oceanogr. 1999;45:1293–1303. doi: 10.4319/lo.1999.44.5.1293. DOI

Beale CM, Lennon JJ, Brewer MJ, Elston DA. Regression analysis of spatial data. Ecology Letters. 2010;13:246–264. doi: 10.1111/j.1461-0248.2009.01422.x. PubMed DOI

Legendre P. Spatial Autocorrelation: Trouble or New Paradigm? Ecology. 1993;74:1659–1673. doi: 10.2307/1939924. DOI

Kühn I. Incorporating spatial autocorrelation may invert observed patterns. Diversity and Distributions. 2007;13:66–69.

Dormann FC, et al. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography. 2007;30:609–628. doi: 10.1111/j.2007.0906-7590.05171.x. DOI

Anselin L, Syabri I, Kho Y. GeoDa: An Introduction to Spatial Data Analysis. Geographical Analysis. 2006;38:5–22. doi: 10.1111/j.0016-7363.2005.00671.x. DOI

Říha M, et al. Patterns in diel habitat use of fish covering the littoral and pelagic zones in a reservoir. Hydrobiologia. 2015;747:111–131. doi: 10.1007/s10750-014-2124-x. DOI

Guillard J, Brehmer P, Colon M, Guennégan Y. Three dimensional characteristics of young–of–year pelagic fish schools in lake. Aquat. Living Resour. 2006;19:115–122. doi: 10.1051/alr:2006011. DOI

Mrkvička T, Muška M, Kubečka J. Two step estimation for Neyman-Scott point process with inhomogeneous cluster centers. Statistics and Computing. 2014;24:91–100. doi: 10.1007/s11222-012-9355-3. DOI

Milne SW, Shuter BJ, Sprules WG. The schooling and foraging ecology of lake herring (Coregonus artedi) in Lake Opeongo, Ontario, Canada. Canadian Journal of Fisheries and Aquatic Sciences. 2005;62:1210–1218. doi: 10.1139/f05-030. DOI

Johannes MRS. Prey aggregation is correlated with increased predation pressure in lake fish communities. Canadian Journal of Fisheries and Aquatic Sciences. 1993;50:66–73. doi: 10.1139/f93-008. DOI

Pitcher TJ, Magurran AE, Winfield IJ. Fish in larger shoals find food faster. Behavioral Ecology and Sociobiology. 1982;10:149–151. doi: 10.1007/BF00300175. DOI

Whitney RR. Schooling of fishes relative to available light. Transactions of the American Fisheries Society. 1969;98:497–504. doi: 10.1577/1548-8659(1969)98[497:SOFRTA]2.0.CO;2. DOI

Borcard D, Legendre P, Avois-Jacquet C, Tuomisto H. Dissecting the spatial structure of ecological data at multiple scales. Ecology. 2004;85:1826–1832. doi: 10.1890/03-3111. DOI

Čech M, Kubečka J. Sinusoidal cycling swimming pattern of reservoir fishes. Journal of Fish Biology. 2002;61:456–471. doi: 10.1111/j.1095-8649.2002.tb01577.x. DOI

Comeau S, Boisclair D. Day-to-day variation in fish horizontal migration and its potential consequence on estimates of trophic interactions in lakes. Fish. Res. 1998;35:75–81. doi: 10.1016/S0165-7836(98)00061-7. DOI

Gido KB, Matthews WJ, Montgomery WL. Dynamics of the Offshore Fish Assemblage in a Southwestern Reservoir (Lake Texoma, Oklahoma, Texas) Copeia. 2000;2000:917–930. doi: 10.1643/0045-8511(2000)000[0917:DOTOFA]2.0.CO;2. DOI

Yule D, et al. Can pelagic forage fish and spawning cisco (Coregonus artedi) biomass in the western arm of Lake Superior be assessed with a single summer survey? Fisheries Research. 2009;96:39–50. doi: 10.1016/j.fishres.2008.09.012. DOI

Prchalová M, et al. Fish activity as determined by gillnet catch: A comparison of two reservoirs of different turbidity. Fish. Res. 2010;102:291–296. doi: 10.1016/j.fishres.2009.12.011. DOI

Helfman GSTA. and Temporal Structure in FreshwaterFish Community. Can. J. Fish. Aquat. Sci. 1981;38:1405–1420. doi: 10.1139/f81-187. DOI

Draštík V, et al. Hydroacoustic estimates of fish stocks in temperate reservoirs: day or night surveys? Aquatic Living Resources. 2009;22:69–77. doi: 10.1051/alr/2009013. DOI

Vašek M, et al. The use of pelagic habitat by cyprinids in a deep riverine impoundment: Římov Reservoir, Czech Republic. Folia Zool. 2008;57(3):324–336.

Vašek M, Kubečka J. In situ diel patterns of zooplankton consumption by subadult/adult roach Rutilus rutilus, bream Abramis brama, and bleak Alburnus alburnus. Folia Zool. 2004;53:203–214.

Romare P, Berg S, Lauridsen T, Jeppesen E. Spatial and temporal distribution of fish and zooplankton in a shallow lake. Freshwater Biology. 2003;48:1353–1362. doi: 10.1046/j.1365-2427.2003.01081.x. DOI

Hölker F, et al. Species-specific responses of planktivorous fish to the introduction of a new piscivore: implications for prey fitness. Freshwater Biology. 2007;52:1793–1806. doi: 10.1111/j.1365-2427.2007.01810.x. DOI

Nilsson PA, Brönmark C. Prey vulnerability to a gape-size limited predator: behavioural and morphological impacts on northern pike piscivory. Oikos. 2000;88:539–546. doi: 10.1034/j.1600-0706.2000.880310.x. DOI

Turner GF, Pitcher TJ. Attac abatement - A model for group protection by combined avoidance and dilution. American Naturalist. 1986;128:228–240. doi: 10.1086/284556. DOI

Richmond H, Hrabik T, Mensinger A. Light intensity, prey detection and foraging mechanisms of age 0 year yellow perch. Journal of Fish Biology. 2004;65:195–205. doi: 10.1111/j.0022-1112.2004.00444.x. DOI

Jarolím O, et al. Sinusoidal swimming in fishes: the role of season, density of large zooplankton, fish length, time of the day, weather condition and solar radiation. Hydrobiologia. 2010;654:253–265. doi: 10.1007/s10750-010-0398-1. DOI

Heege T, Appenzeller AR. Corelation of large-scale patterns of turbidity and pelagic fish biomass using satellite and acoustic methods. Arch. Hydrobiol. Spec. Issues Advanc. Limnol. 1998;53:489–503.

Jacobsen L, Berg S, Jepsen N, Skov C. Does roach behaviour differ between shallow lakes of different environmental state? Journal of Fish Biology. 2004;65(1):135–147. doi: 10.1111/j.0022-1112.2004.00436.x. DOI

De Robertis A, Ryer CH, Veloza A, Brodeur RD. Differential effects of turbidity on prey consumption of piscivorous and planktivorous fish. Canadian Journal of Fisheries and Aquatic Sciences. 2003;60(12):1517–1526. doi: 10.1139/f03-123. DOI

Scheuerell MD, Schindler DE. Changes in the Spatial Distribution of Fishes in Lakes Along a Residential Development Gradient. Ecosystems. 2004;7:98–106. doi: 10.1007/s10021-003-0214-0. DOI

Kubečka J, Wittingerová M. Horizontal beaming as a crucial component of acoustic fish stock assessment in freshwater reservoirs. Fish. Res. 1998;35:99–106. doi: 10.1016/S0165-7836(98)00064-2. DOI

Zamora L, Moreno-Amich R. Quantifying the activity and movement of perch in a temperate lake by integrating acoustic telemetry and a geographic information system. Hydrobiologia. 2002;483:209–218. doi: 10.1023/A:1021396016424. DOI

Muška M, et al. To migrate, or not to migrate: partial diel horizontal migration of fish in a temperate freshwater reservoir. Hydrobiologia. 2013;707:17–28. doi: 10.1007/s10750-012-1401-9. DOI

Bonanno A, et al. Habitat Selection Response of Small Pelagic Fish in Different Environments. Two Examples from the Oligotrophic Mediterranean Sea. PLoS ONE. 2014;9:e101498. doi: 10.1371/journal.pone.0101498. PubMed DOI PMC

Drastik V, et al. Fish hydroacoustic survey standardization: A step forward based on comparisons of methods and systems from vertical surveys of a large deep lake. Limnology and Oceanography-Methods. 2017;15:836–846. doi: 10.1002/lom3.10202. DOI

Morfin M, Fromentin J-M, Jadaud A, Bez N. Spatio-Temporal Patterns of Key Exploited Marine Species in the Northwestern Mediterranean Sea. PLoS ONE. 2012;7:e37907. doi: 10.1371/journal.pone.0037907. PubMed DOI PMC

Foote KG, Knudsen HP, Vestnes G, MacLennan DN, Simmonds EJ. Calibration of acoustic instruments for fish density estimation. ICES Coop. Rep. 1987;144:1–70.

Balk H, Lindem T. Improved fish detection probability in data from split-beam sonar. Aquatic Living Resources. 2000;13:297–303. doi: 10.1016/S0990-7440(00)01079-2. DOI

CEN (European Committee for Standardization). CEN/TC 230 EN 15910. Guidance on the estimation of fish abundance with mobile hydroacoustic methods. (CEN, 2014).

Seda J, Petrusek A, Machacek J, Smilauer P. Spatial distribution of the Daphnia longispina species complex and other planktonic crustaceans in the heterogeneous environment of canyon-shaped reservoirs. Journal of Plankton Research. 2007;29:619–628. doi: 10.1093/plankt/fbm044. DOI

fields: Tools for spatial data v. R package version 9.0 (2015).

Moran PAP. Notes on continuous stochastic phenomena. Biometrika. 1950;37:17–23. doi: 10.1093/biomet/37.1-2.17. PubMed DOI

R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2015).

Bjornstad ON, Falck W. Nonparametric spatial covariance functions: Estimation and testing. Environmental and Ecological Statistics. 2001;8:53–70. doi: 10.1023/A:1009601932481. DOI

Abdi, H. In Encyclopedia of Measurement and Statistics (ed. N. J. Salkind) (SAGE Publications, Inc., 2007).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...