• This record comes from PubMed

NGR (Asn-Gly-Arg)-targeted delivery of coagulase to tumor vasculature arrests cancer cell growth

. 2018 Jul ; 37 (29) : 3967-3980. [epub] 20180417

Language English Country England, Great Britain Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S.

Links

PubMed 29662195
PubMed Central PMC6053358
DOI 10.1038/s41388-018-0213-4
PII: 10.1038/s41388-018-0213-4
Knihovny.cz E-resources

Induction of selective thrombosis and infarction in tumor-feeding vessels represents an attractive strategy to combat cancer. Here we took advantage of the unique coagulation properties of staphylocoagulase and genetically engineered it to generate a new fusion protein with novel anti-cancer properties. This novel bi-functional protein consists of truncated coagulase (tCoa) and an NGR (GNGRAHA) motif that recognizes CD13 and αvβ3 integrin receptors, targeting it to tumor endothelial cells. Herein, we report that tCoa coupled by its C-terminus to an NGR sequence retained its normal binding activity with prothrombin and avβ3 integrins, as confirmed in silico and in vitro. Moreover, in vivo biodistribution studies demonstrated selective accumulation of FITC-labeled tCoa-NGR fusion proteins at the site of subcutaneously implanted PC3 tumor xenografts in nude mice. Notably, systemic administration of tCoa-NGR to mice bearing 4T1 mouse mammary xenografts or PC3 human prostate tumors resulted in a significant reduction in tumor growth. These anti-tumor effects were accompanied by massive thrombotic occlusion of small and large tumor vessels, tumor infarction and tumor cell death. From these findings, we propose tCoa-NGR mediated tumor infarction as a novel and promising anti-cancer strategy targeting both CD13 and integrin αvβ3 positive tumor neovasculature.

See more in PubMed

Jahanban-Esfahlan R, Seidi K, Zarghami N. Tumor vascular infarction: prospects and challenges. Int J Hematol. 2017;105:244–56. doi: 10.1007/s12185-016-2171-3. PubMed DOI

Bieker R, Kessler T, Schwoppe C, Padro T, Persigehl T, Bremer C, et al. Infarction of tumor vessels by NGR-peptide-directed targeting of tissue factor: experimental results and first-in-man experience. Blood. 2009;113:5019–27. doi: 10.1182/blood-2008-04-150318. PubMed DOI

Brand C, Schliemann C, Ring J, Kessler T, Bäumer S, Angenendt L, et al. NG2 proteoglycan as a pericyte target for anticancer therapy by tumor vessel infarction with retargeted tissue factor. Oncotarget. 2016;7:6774–89. doi: 10.18632/oncotarget.6725. PubMed DOI PMC

Hu P, Yan J, Sharifi J, Bai T, Khawli LA, Epstein AL. Comparison of three different targeted tissue factor fusion proteins for inducing tumor vessel thrombosis. Cancer Res. 2003;63:5046–53. PubMed

Huang FY, Li YN, Wang H, Huang YH, Lin YY, Tan GH. A fusion protein containing murine vascular endothelial growth factor and tissue factor induces thrombogenesis and suppression of tumor growth in a colon carcinoma model. J Zhejiang Univ Sci B. 2008;9:602–9. doi: 10.1631/jzus.B0820120. PubMed DOI PMC

Huang X, Molema G, King S, Watkins L, Edgington TS, Thorpe PE. Tumor infarction in mice by antibody-directed targeting of tissue factor to tumor vasculature. Science. 1997;275:547–50. doi: 10.1126/science.275.5299.547. PubMed DOI

Huang ZJ, Wang R, Liu ZZ, Wang SY, Yan JH, Luo Q. Humanized monoclonal antibody TNT-3-mediated truncated tissue factor for the treatment of H22 hepatoma-bearing mice. Zhonghua Zhong Liu Za Zhi. 2012;34:249–53. PubMed

Kessler T, Bieker R, Padro T, Schwoppe C, Persigehl T, Bremer C, et al. Inhibition of tumor growth by RGD peptide-directed delivery of truncated tissue factor to the tumor vasculature. Clin Cancer Res. 2005;11:6317–24. doi: 10.1158/1078-0432.CCR-05-0389. PubMed DOI

Nilsson F, Kosmehl H, Zardi L, Neri D. Targeted delivery of tissue factor to theED-B domain of fibronectin, a marker of angiogenesis, mediates the infarction of solid tumors in mice. Cancer Res. 2001;61:711–6. PubMed

Ran S, Gao B, Duffy S, Watkins L, Rote N, Thorp PE. Infarction of solid hodgkin’s tumors in mice by antibody-directed targeting of tissue factor to tumor vasculature. Cancer Res. 1998;58:4646–53. PubMed

Corti A, Curnis F. Tumor vasculature targeting through NGR peptide-based drug delivery systems. Curr Pharm Biotechnol. 2011;12:1128–34. doi: 10.2174/138920111796117373. PubMed DOI

Jahanban-Esfahlan R, Seidi K, Banimohamad-Shotorbani B, Jahanban-Esfahlan A, Yousefi B. Combination of nanotechnology with vascular targeting agents for effective cancer therapy. J Cell Physiol. 2018;233:2982–92. doi: 10.1002/jcp.26051. PubMed DOI

Corti A, Curnis F, Arap W, Pasqualini R. The neovasculature homing motif NGR: more than meets the eye. Blood. 2008;112:2628–35. doi: 10.1182/blood-2008-04-150862. PubMed DOI PMC

Jahanban-Esfahlan R, Seidi K, Monhemi H, Adli ADF, Minofar B, Zare P, et al. RGD delivery of truncated coagulase to tumor vasculature affords local thrombotic activity to induce infarction of tumors in mice. Sci Rep. 2017;7:8126. doi: 10.1038/s41598-017-05326-9. PubMed DOI PMC

Bhagwat SV, Lahdenranta J, Giordano RJ, Arap W, Pasqualini R, Shapiro LH. CD13/APN is activated by angiogenic signals and is essential for capillary tube formation. Blood. 2001;97:652–9. doi: 10.1182/blood.V97.3.652. PubMed DOI PMC

Seidi K, Neubauer HA, Moriggl R, Jahanban-Esfahlan R, Javaheri T. Tumor target amplification: Implications for nano drug delivery systems. J Control Release. 2018;275:142–61. doi: 10.1016/j.jconrel.2018.02.020. PubMed DOI

Liu Z, Wang F, Chen X. Integrin α(v)β(3)-targeted cancer therapy. Drug Dev Res. 2008;69:329–39. doi: 10.1002/ddr.20265. PubMed DOI PMC

Hashida H, Takabayashi A, Kanai M, Adachi M, Kondo K, Kohno N, et al. Aminopeptidase N is involved in cell motility and angiogenesis: its clinical significance in human colon cancer. Gastroenterology. 2002;122:376–86. doi: 10.1053/gast.2002.31095. PubMed DOI

Seidi K, Jahanban-Esfahlan R, Zarghami N. Tumor rim cells: from resistance to vascular targeting agents (VTAs) to complete tumor ablation. Tumor Biol. 2017;39:1–15. doi: 10.1177/1010428317691001. PubMed DOI

Panizzi P, Friedrich R, Fuentes-Prior P, Bode W, Bock PE. The staphylocoagulase family of zymogen activator and adhesion proteins. Cell Mol Life Sci. 2004;61:2793–8. doi: 10.1007/s00018-004-4285-7. PubMed DOI PMC

Friedrich R, Panizzi P, Fuentes-Prior P, Richter K, Verhamme I, Anderson PJ, et al. Staphylocoagulase is a prototype for the mechanism of cofactor-induced zymogen activation. Nature. 2003;425:535–9. doi: 10.1038/nature01962. PubMed DOI

Panizzi P, Friedrich R, Fuentes-Prior P, Richter K, Bock PE, Bode W. Fibrinogen substrate recognition by staphylocoagulase.(pro)thrombin complexes. J Biol Chem. 2006;281:1179–87. doi: 10.1074/jbc.M507956200. PubMed DOI PMC

Friedrich R, Panizzi P, Kawabata S, Bode W, Bock PE, Fuentes-Prior P. Structural basis for reduced staphylocoagulase-mediated bovine prothrombin activation. J Biol Chem. 2006;281:1188–95. doi: 10.1074/jbc.M507957200. PubMed DOI PMC

Chen J, Bierhaus A, Schiekofer S, Andrassy M, Chen B, Stern DM, et al. Tissue factor--a receptor involved in the control of cellular properties, including angiogenesis. Thromb Haemost. 2001;86:334–45. doi: 10.1055/s-0037-1616231. PubMed DOI

Yokota N, Zarpellon A, Chakrabarty S, Bogdanov VY, Gruber A, Castellino FJ, et al. Contributions of thrombin targets to tissue factor-dependent metastasis in hyperthrombotic mice. J Thromb Haemost. 2014;12:71–81. doi: 10.1111/jth.12442. PubMed DOI PMC

Nierodzik ML, Karpatkin S. Thrombin induces tumor growth, metastasis, and angiogenesis: evidence for a thrombin-regulated dormant tumor phenotype. Cancer Cell. 2006;10:355–62. doi: 10.1016/j.ccr.2006.10.002. PubMed DOI

Mojovic B, Mojovic N, Tager M, Drummond MC. Staphylocoagulase as a hemostatic agent. Yale J Biol Med. 1969;42:11–20. PubMed PMC

Kerbel RS. Tumor angiogenesis: past, present and the near future. Carcinogenesis. 2000;21:505–15. doi: 10.1093/carcin/21.3.505. PubMed DOI

Kubota Y. Tumor angiogenesis and anti-angiogenic therapy. Keio J Med. 2012;61:47–56. doi: 10.2302/kjm.61.47. PubMed DOI

Jahanban-Esfahlan R, de la Guardia M, Ahmadi D, Yousefi B. Modulating tumor hypoxia by nanomedicine for effective cancer therapy. J Cell Physiol. 2018;233(3):2019–31. doi: 10.1002/jcp.25859. PubMed DOI

Daei FAA, Jahanban-Esfahlan R, Seidi K, Samandari-Rad S, Zarghami N. An overview on Vadimezan (DMXAA), the vascular disrupting agent. Chem Biol Drug Des. 2017. 10.1111/cbdd.13166. PubMed

Thorpe PE. Vascular targeting agents as cancer therapeutics. Clin Cancer Res. 2004;10:415–27. doi: 10.1158/1078-0432.CCR-0642-03. PubMed DOI

Vasudev NS, Reynolds AR. Anti-angiogenic therapy for cancer: current progress, unresolved questions and future directions. Angiogenesis. 2014;17:471–94. doi: 10.1007/s10456-014-9420-y. PubMed DOI PMC

Tozer GM, Kanthou C, Baguley BC. Disrupting tumour blood vessels. Nat Rev Cancer. 2005;5:423–35. doi: 10.1038/nrc1628. PubMed DOI

Liu C, Huang H, Donate F, Dickinson C, Santucci R, El-Sheikh A, et al. Prostate-specific membrane antigen directed selective thrombotic infarction of tumors. Cancer Res. 2002;62:5470–5. PubMed

Dreischaluck J, Schwoppe C, Spiekers T, Kessler T, Tiemann K, Liersch R, et al. Vascular infarction by subcutaneous application of tissue factor targeted to tumor vessels with NGR-peptides: Activity and toxicity profile. Int J Oncol. 2010;37:1389–97. PubMed

Cheng AG, McAdow M, Kim HK, Bae T, Missiakas DM, Schneewind O. Contribution of coagulases towards Staphylococcus aureus disease and protective immunity. PLoS Pathog. 2010;6:e1001036. doi: 10.1371/journal.ppat.1001036. PubMed DOI PMC

Huang ZJ, Zhao Y, Luo WY, You J, Li SW, Yi WC, et al. Targeting the vasculature of colorectal carcinoma with a fused protein of (RGD)(3)-tTF. Sci World J. 2013;2013:637086. PubMed PMC

Smith DD, Johnstone JM. Staphylocoagulase activity In vivo. Br J Exp Pathol. 1958;39:165–70. PubMed PMC

Kastrup CJ, Boedicker JQ, Pomerantsev AP, Moayeri M, Bian Y, Pompano RR, et al. Spatial localization of bacteria controls coagulation of human blood by ‘quorum acting’. Nat Chem Biol. 2008;4:742–50. doi: 10.1038/nchembio.124. PubMed DOI PMC

Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. The I-TASSER Suite: protein structure and function prediction. Nat Meth. 2015;12:7–8. doi: 10.1038/nmeth.3213. PubMed DOI PMC

van Zundert GC, Rodrigues JP, Trellet M, Schmitz C, Kastritis PL, Karaca E, et al. The HADDOCK2.2 Web server: user-friendly integrative modeling of biomolecular complexes. J Mol Biol. 2016;428:720–5. doi: 10.1016/j.jmb.2015.09.014. PubMed DOI

Delano W. The PyMOL Molecular Graphics System. Available at: citeulike-article-id:2816763. http://www.pymol.org. 2002.

McAdow M, DeDent AC, Emolo C, Cheng AG, Kreiswirth BN, Missiakas DM, et al. Coagulases as determinants of protective immune responses against Staphylococcus aureus. Infect Immun. 2012;80:3389–98. doi: 10.1128/IAI.00562-12. PubMed DOI PMC

Kazemi Z, Bergmayr C, Prchal-Murphy M, Javaheri T, Themanns M, Pham HT, et al. Repurposing Treprostinil for Enhancing Hematopoietic Progenitor Cell Transplantation. Mol Pharmacol. 2016;89:630–44. doi: 10.1124/mol.116.103267. PubMed DOI PMC

Minas TZ, Han J, Javaheri T, Hong SH, Schlederer M, Saygideger-Kont Y, et al. YK-4-279 effectively antagonizes EWS-FLI1 induced leukemia in a transgenic mouse model. Oncotarget. 2015;6:37678–94. doi: 10.18632/oncotarget.5520. PubMed DOI PMC

Javaheri T, Kazemi Z, Pencik J, Pham HT, Kauer M, Noorizadeh R, et al. Increased survival and cell cycle progression pathways are required for EWS/FLI1-induced malignant transformation. Cell Death Dis. 2016;7:e2419. doi: 10.1038/cddis.2016.268. PubMed DOI PMC

Minas TZ, Surdez D, Javaheri T, Tanaka M, Howarth M, Kang HJ, et al. Combined experience of six independent laboratories attempting to create an Ewing sarcoma mouse model. Oncotarget. 2017;8:34141–63. doi: 10.18632/oncotarget.9388. PubMed DOI PMC

Pencik J, Schlederer M, Gruber W, Unger C, Walker SM, Chalaris A, et al. STAT3 regulated ARF expression suppresses prostate cancer metastasis. Nat Commun. 2015;6:7736. doi: 10.1038/ncomms8736. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...