NGR (Asn-Gly-Arg)-targeted delivery of coagulase to tumor vasculature arrests cancer cell growth
Language English Country England, Great Britain Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
29662195
PubMed Central
PMC6053358
DOI
10.1038/s41388-018-0213-4
PII: 10.1038/s41388-018-0213-4
Knihovny.cz E-resources
- MeSH
- CD13 Antigens metabolism MeSH
- Cell Death physiology MeSH
- Human Umbilical Vein Endothelial Cells MeSH
- Integrin alphaVbeta3 metabolism MeSH
- Coagulase metabolism MeSH
- Humans MeSH
- Mice, Inbred C57BL MeSH
- Mice, Nude MeSH
- Mice MeSH
- Cell Line, Tumor MeSH
- Mammary Neoplasms, Animal metabolism pathology MeSH
- Prostatic Neoplasms metabolism pathology MeSH
- Oligopeptides metabolism MeSH
- Neovascularization, Pathologic metabolism pathology MeSH
- Xenograft Model Antitumor Assays MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Names of Substances
- CD13 Antigens MeSH
- Integrin alphaVbeta3 MeSH
- Coagulase MeSH
- NGR peptide MeSH Browser
- Oligopeptides MeSH
Induction of selective thrombosis and infarction in tumor-feeding vessels represents an attractive strategy to combat cancer. Here we took advantage of the unique coagulation properties of staphylocoagulase and genetically engineered it to generate a new fusion protein with novel anti-cancer properties. This novel bi-functional protein consists of truncated coagulase (tCoa) and an NGR (GNGRAHA) motif that recognizes CD13 and αvβ3 integrin receptors, targeting it to tumor endothelial cells. Herein, we report that tCoa coupled by its C-terminus to an NGR sequence retained its normal binding activity with prothrombin and avβ3 integrins, as confirmed in silico and in vitro. Moreover, in vivo biodistribution studies demonstrated selective accumulation of FITC-labeled tCoa-NGR fusion proteins at the site of subcutaneously implanted PC3 tumor xenografts in nude mice. Notably, systemic administration of tCoa-NGR to mice bearing 4T1 mouse mammary xenografts or PC3 human prostate tumors resulted in a significant reduction in tumor growth. These anti-tumor effects were accompanied by massive thrombotic occlusion of small and large tumor vessels, tumor infarction and tumor cell death. From these findings, we propose tCoa-NGR mediated tumor infarction as a novel and promising anti-cancer strategy targeting both CD13 and integrin αvβ3 positive tumor neovasculature.
Department of Chemistry University of Neyshabour Khorasan Razavi Province Neyshabour Iran
Department of Pathobiology Faculty of Veterinary Sciences University of Tabriz Tabriz Iran
Drug Applied Research Center Tabriz University of Medical Sciences Tabriz Iran
Iranian National Science Foundation Tehran Iran
Ludwig Boltzmann Institute for Cancer Research 1090 Vienna Austria
See more in PubMed
Jahanban-Esfahlan R, Seidi K, Zarghami N. Tumor vascular infarction: prospects and challenges. Int J Hematol. 2017;105:244–56. doi: 10.1007/s12185-016-2171-3. PubMed DOI
Bieker R, Kessler T, Schwoppe C, Padro T, Persigehl T, Bremer C, et al. Infarction of tumor vessels by NGR-peptide-directed targeting of tissue factor: experimental results and first-in-man experience. Blood. 2009;113:5019–27. doi: 10.1182/blood-2008-04-150318. PubMed DOI
Brand C, Schliemann C, Ring J, Kessler T, Bäumer S, Angenendt L, et al. NG2 proteoglycan as a pericyte target for anticancer therapy by tumor vessel infarction with retargeted tissue factor. Oncotarget. 2016;7:6774–89. doi: 10.18632/oncotarget.6725. PubMed DOI PMC
Hu P, Yan J, Sharifi J, Bai T, Khawli LA, Epstein AL. Comparison of three different targeted tissue factor fusion proteins for inducing tumor vessel thrombosis. Cancer Res. 2003;63:5046–53. PubMed
Huang FY, Li YN, Wang H, Huang YH, Lin YY, Tan GH. A fusion protein containing murine vascular endothelial growth factor and tissue factor induces thrombogenesis and suppression of tumor growth in a colon carcinoma model. J Zhejiang Univ Sci B. 2008;9:602–9. doi: 10.1631/jzus.B0820120. PubMed DOI PMC
Huang X, Molema G, King S, Watkins L, Edgington TS, Thorpe PE. Tumor infarction in mice by antibody-directed targeting of tissue factor to tumor vasculature. Science. 1997;275:547–50. doi: 10.1126/science.275.5299.547. PubMed DOI
Huang ZJ, Wang R, Liu ZZ, Wang SY, Yan JH, Luo Q. Humanized monoclonal antibody TNT-3-mediated truncated tissue factor for the treatment of H22 hepatoma-bearing mice. Zhonghua Zhong Liu Za Zhi. 2012;34:249–53. PubMed
Kessler T, Bieker R, Padro T, Schwoppe C, Persigehl T, Bremer C, et al. Inhibition of tumor growth by RGD peptide-directed delivery of truncated tissue factor to the tumor vasculature. Clin Cancer Res. 2005;11:6317–24. doi: 10.1158/1078-0432.CCR-05-0389. PubMed DOI
Nilsson F, Kosmehl H, Zardi L, Neri D. Targeted delivery of tissue factor to theED-B domain of fibronectin, a marker of angiogenesis, mediates the infarction of solid tumors in mice. Cancer Res. 2001;61:711–6. PubMed
Ran S, Gao B, Duffy S, Watkins L, Rote N, Thorp PE. Infarction of solid hodgkin’s tumors in mice by antibody-directed targeting of tissue factor to tumor vasculature. Cancer Res. 1998;58:4646–53. PubMed
Corti A, Curnis F. Tumor vasculature targeting through NGR peptide-based drug delivery systems. Curr Pharm Biotechnol. 2011;12:1128–34. doi: 10.2174/138920111796117373. PubMed DOI
Jahanban-Esfahlan R, Seidi K, Banimohamad-Shotorbani B, Jahanban-Esfahlan A, Yousefi B. Combination of nanotechnology with vascular targeting agents for effective cancer therapy. J Cell Physiol. 2018;233:2982–92. doi: 10.1002/jcp.26051. PubMed DOI
Corti A, Curnis F, Arap W, Pasqualini R. The neovasculature homing motif NGR: more than meets the eye. Blood. 2008;112:2628–35. doi: 10.1182/blood-2008-04-150862. PubMed DOI PMC
Jahanban-Esfahlan R, Seidi K, Monhemi H, Adli ADF, Minofar B, Zare P, et al. RGD delivery of truncated coagulase to tumor vasculature affords local thrombotic activity to induce infarction of tumors in mice. Sci Rep. 2017;7:8126. doi: 10.1038/s41598-017-05326-9. PubMed DOI PMC
Bhagwat SV, Lahdenranta J, Giordano RJ, Arap W, Pasqualini R, Shapiro LH. CD13/APN is activated by angiogenic signals and is essential for capillary tube formation. Blood. 2001;97:652–9. doi: 10.1182/blood.V97.3.652. PubMed DOI PMC
Seidi K, Neubauer HA, Moriggl R, Jahanban-Esfahlan R, Javaheri T. Tumor target amplification: Implications for nano drug delivery systems. J Control Release. 2018;275:142–61. doi: 10.1016/j.jconrel.2018.02.020. PubMed DOI
Liu Z, Wang F, Chen X. Integrin α(v)β(3)-targeted cancer therapy. Drug Dev Res. 2008;69:329–39. doi: 10.1002/ddr.20265. PubMed DOI PMC
Hashida H, Takabayashi A, Kanai M, Adachi M, Kondo K, Kohno N, et al. Aminopeptidase N is involved in cell motility and angiogenesis: its clinical significance in human colon cancer. Gastroenterology. 2002;122:376–86. doi: 10.1053/gast.2002.31095. PubMed DOI
Seidi K, Jahanban-Esfahlan R, Zarghami N. Tumor rim cells: from resistance to vascular targeting agents (VTAs) to complete tumor ablation. Tumor Biol. 2017;39:1–15. doi: 10.1177/1010428317691001. PubMed DOI
Panizzi P, Friedrich R, Fuentes-Prior P, Bode W, Bock PE. The staphylocoagulase family of zymogen activator and adhesion proteins. Cell Mol Life Sci. 2004;61:2793–8. doi: 10.1007/s00018-004-4285-7. PubMed DOI PMC
Friedrich R, Panizzi P, Fuentes-Prior P, Richter K, Verhamme I, Anderson PJ, et al. Staphylocoagulase is a prototype for the mechanism of cofactor-induced zymogen activation. Nature. 2003;425:535–9. doi: 10.1038/nature01962. PubMed DOI
Panizzi P, Friedrich R, Fuentes-Prior P, Richter K, Bock PE, Bode W. Fibrinogen substrate recognition by staphylocoagulase.(pro)thrombin complexes. J Biol Chem. 2006;281:1179–87. doi: 10.1074/jbc.M507956200. PubMed DOI PMC
Friedrich R, Panizzi P, Kawabata S, Bode W, Bock PE, Fuentes-Prior P. Structural basis for reduced staphylocoagulase-mediated bovine prothrombin activation. J Biol Chem. 2006;281:1188–95. doi: 10.1074/jbc.M507957200. PubMed DOI PMC
Chen J, Bierhaus A, Schiekofer S, Andrassy M, Chen B, Stern DM, et al. Tissue factor--a receptor involved in the control of cellular properties, including angiogenesis. Thromb Haemost. 2001;86:334–45. doi: 10.1055/s-0037-1616231. PubMed DOI
Yokota N, Zarpellon A, Chakrabarty S, Bogdanov VY, Gruber A, Castellino FJ, et al. Contributions of thrombin targets to tissue factor-dependent metastasis in hyperthrombotic mice. J Thromb Haemost. 2014;12:71–81. doi: 10.1111/jth.12442. PubMed DOI PMC
Nierodzik ML, Karpatkin S. Thrombin induces tumor growth, metastasis, and angiogenesis: evidence for a thrombin-regulated dormant tumor phenotype. Cancer Cell. 2006;10:355–62. doi: 10.1016/j.ccr.2006.10.002. PubMed DOI
Mojovic B, Mojovic N, Tager M, Drummond MC. Staphylocoagulase as a hemostatic agent. Yale J Biol Med. 1969;42:11–20. PubMed PMC
Kerbel RS. Tumor angiogenesis: past, present and the near future. Carcinogenesis. 2000;21:505–15. doi: 10.1093/carcin/21.3.505. PubMed DOI
Kubota Y. Tumor angiogenesis and anti-angiogenic therapy. Keio J Med. 2012;61:47–56. doi: 10.2302/kjm.61.47. PubMed DOI
Jahanban-Esfahlan R, de la Guardia M, Ahmadi D, Yousefi B. Modulating tumor hypoxia by nanomedicine for effective cancer therapy. J Cell Physiol. 2018;233(3):2019–31. doi: 10.1002/jcp.25859. PubMed DOI
Daei FAA, Jahanban-Esfahlan R, Seidi K, Samandari-Rad S, Zarghami N. An overview on Vadimezan (DMXAA), the vascular disrupting agent. Chem Biol Drug Des. 2017. 10.1111/cbdd.13166. PubMed
Thorpe PE. Vascular targeting agents as cancer therapeutics. Clin Cancer Res. 2004;10:415–27. doi: 10.1158/1078-0432.CCR-0642-03. PubMed DOI
Vasudev NS, Reynolds AR. Anti-angiogenic therapy for cancer: current progress, unresolved questions and future directions. Angiogenesis. 2014;17:471–94. doi: 10.1007/s10456-014-9420-y. PubMed DOI PMC
Tozer GM, Kanthou C, Baguley BC. Disrupting tumour blood vessels. Nat Rev Cancer. 2005;5:423–35. doi: 10.1038/nrc1628. PubMed DOI
Liu C, Huang H, Donate F, Dickinson C, Santucci R, El-Sheikh A, et al. Prostate-specific membrane antigen directed selective thrombotic infarction of tumors. Cancer Res. 2002;62:5470–5. PubMed
Dreischaluck J, Schwoppe C, Spiekers T, Kessler T, Tiemann K, Liersch R, et al. Vascular infarction by subcutaneous application of tissue factor targeted to tumor vessels with NGR-peptides: Activity and toxicity profile. Int J Oncol. 2010;37:1389–97. PubMed
Cheng AG, McAdow M, Kim HK, Bae T, Missiakas DM, Schneewind O. Contribution of coagulases towards Staphylococcus aureus disease and protective immunity. PLoS Pathog. 2010;6:e1001036. doi: 10.1371/journal.ppat.1001036. PubMed DOI PMC
Huang ZJ, Zhao Y, Luo WY, You J, Li SW, Yi WC, et al. Targeting the vasculature of colorectal carcinoma with a fused protein of (RGD)(3)-tTF. Sci World J. 2013;2013:637086. PubMed PMC
Smith DD, Johnstone JM. Staphylocoagulase activity In vivo. Br J Exp Pathol. 1958;39:165–70. PubMed PMC
Kastrup CJ, Boedicker JQ, Pomerantsev AP, Moayeri M, Bian Y, Pompano RR, et al. Spatial localization of bacteria controls coagulation of human blood by ‘quorum acting’. Nat Chem Biol. 2008;4:742–50. doi: 10.1038/nchembio.124. PubMed DOI PMC
Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. The I-TASSER Suite: protein structure and function prediction. Nat Meth. 2015;12:7–8. doi: 10.1038/nmeth.3213. PubMed DOI PMC
van Zundert GC, Rodrigues JP, Trellet M, Schmitz C, Kastritis PL, Karaca E, et al. The HADDOCK2.2 Web server: user-friendly integrative modeling of biomolecular complexes. J Mol Biol. 2016;428:720–5. doi: 10.1016/j.jmb.2015.09.014. PubMed DOI
Delano W. The PyMOL Molecular Graphics System. Available at: citeulike-article-id:2816763. http://www.pymol.org. 2002.
McAdow M, DeDent AC, Emolo C, Cheng AG, Kreiswirth BN, Missiakas DM, et al. Coagulases as determinants of protective immune responses against Staphylococcus aureus. Infect Immun. 2012;80:3389–98. doi: 10.1128/IAI.00562-12. PubMed DOI PMC
Kazemi Z, Bergmayr C, Prchal-Murphy M, Javaheri T, Themanns M, Pham HT, et al. Repurposing Treprostinil for Enhancing Hematopoietic Progenitor Cell Transplantation. Mol Pharmacol. 2016;89:630–44. doi: 10.1124/mol.116.103267. PubMed DOI PMC
Minas TZ, Han J, Javaheri T, Hong SH, Schlederer M, Saygideger-Kont Y, et al. YK-4-279 effectively antagonizes EWS-FLI1 induced leukemia in a transgenic mouse model. Oncotarget. 2015;6:37678–94. doi: 10.18632/oncotarget.5520. PubMed DOI PMC
Javaheri T, Kazemi Z, Pencik J, Pham HT, Kauer M, Noorizadeh R, et al. Increased survival and cell cycle progression pathways are required for EWS/FLI1-induced malignant transformation. Cell Death Dis. 2016;7:e2419. doi: 10.1038/cddis.2016.268. PubMed DOI PMC
Minas TZ, Surdez D, Javaheri T, Tanaka M, Howarth M, Kang HJ, et al. Combined experience of six independent laboratories attempting to create an Ewing sarcoma mouse model. Oncotarget. 2017;8:34141–63. doi: 10.18632/oncotarget.9388. PubMed DOI PMC
Pencik J, Schlederer M, Gruber W, Unger C, Walker SM, Chalaris A, et al. STAT3 regulated ARF expression suppresses prostate cancer metastasis. Nat Commun. 2015;6:7736. doi: 10.1038/ncomms8736. PubMed DOI PMC