• This record comes from PubMed

RGD delivery of truncated coagulase to tumor vasculature affords local thrombotic activity to induce infarction of tumors in mice

. 2017 Aug 15 ; 7 (1) : 8126. [epub] 20170815

Language English Country England, Great Britain Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 28811469
PubMed Central PMC5557930
DOI 10.1038/s41598-017-05326-9
PII: 10.1038/s41598-017-05326-9
Knihovny.cz E-resources

Induction of thrombosis in tumor vasculature represents an appealing strategy for combating cancer. Herein, we combined unique intrinsic coagulation properties of staphylocoagulase with new acquired functional potentials introduced by genetic engineering, to generate a novel bi-functional fusion protein consisting of truncated coagulase (tCoa) bearing an RGD motif on its C-terminus for cancer therapy. We demonstrated that free coagulase failed to elicit any significant thrombotic activity. Conversely, RGD delivery of coagulase retained coagulase activity and afforded favorable interaction of fusion proteins with prothrombin and αvβ3 endothelial cell receptors, as verified by in silico, in vitro, and in vivo experiments. Although free coagulase elicited robust coagulase activity in vitro, only targeted coagulase (tCoa-RGD) was capable of producing extensive thrombosis, and subsequent infarction and massive necrosis of CT26 mouse colon, 4T1 mouse mammary and SKOV3 human ovarian tumors in mice. Additionally, systemic injections of lower doses of tCoa-RGD produced striking tumor growth inhibition of CT26, 4T1 and SKOV3 solid tumors in animals. Altogether, the nontoxic nature, unique shortcut mechanism, minimal effective dose, wide therapeutic window, efficient induction of thrombosis, local effects and susceptibility of human blood to coagulase suggest tCoa-RGD fusion proteins as a novel and promising anticancer therapy for human trials.

See more in PubMed

Jahanban-Esfahlan, R., de la Guardia, M., Ahmadi, D. & Yousefi, B. Modulating tumor hypoxia by nanomedicine for effective cancer therapy. J. Cell. Physiol, doi:10.1002/jcp.25859 (2017). PubMed

Liu C, et al. Prostate-specific membrane antigen directed selective thrombotic infarction of tumors. Cancer. Res. 2002;62:5470–5475. PubMed

Bieker R, et al. Infarction of tumor vessels by NGR-peptide-directed targeting of tissue factor: experimental results and first-in-man experience. Blood. 2009;113:5019–5027. doi: 10.1182/blood-2008-04-150318. PubMed DOI

Hu P, et al. Comparison of three different targeted tissue factor fusion proteins for inducing tumor vessel thrombosis. Cancer. Res. 2003;63:5046–5053. PubMed

Huang FY, et al. A fusion protein containing murine vascular endothelial growth factor and tissue factor induces thrombogenesis and suppression of tumor growth in a colon carcinoma model. J. Zhejiang. Univ. Sci. B. 2008;9:602–609. doi: 10.1631/jzus.B0820120. PubMed DOI PMC

Huang X, et al. Tumor infarction in mice by antibody-directed targeting of tissue factor to tumor vasculature. Science. 1997;275:547–550. doi: 10.1126/science.275.5299.547. PubMed DOI

Kessler T, et al. Inhibition of tumor growth by RGD peptide-directed delivery of truncated tissue factor to the tumor vasculature. Clin. Cancer. Res. 2005;11:6317–6324. doi: 10.1158/1078-0432.CCR-05-0389. PubMed DOI

Nilsson F, Kosmehl H, Zardi L, Neri D. Targeted delivery of tissue factor to the ED-B domain of fibronectin, a marker of angiogenesis, mediates the infarction of solid tumors in mice. Cancer. Res. 2001;61:711–716. PubMed

Ran S, et al. Infarction of solid hodgkin’s tumors in mice by antibody-directed targeting of tissue factor to tumor vasculature. Cancer. Res. 1998;58:4646–4653. PubMed

Brand C, et al. NG2 proteoglycan as a pericyte target for anticancer therapy by tumor vessel infarction with retargeted tissue factor. Oncotarget. 2016;7:6774–6789. doi: 10.18632/oncotarget.6725. PubMed DOI PMC

Liu S. Radiolabeled cyclic RGD peptides as integrin alpha(v)beta(3)-targeted radiotracers: maximizing binding affinity via bivalency. Bioconjug. Chem. 2009;20:2199–2213. doi: 10.1021/bc900167c. PubMed DOI PMC

Camerer E, Huang W, Coughlin SR. Tissue factor- and factor X-dependent activation of protease-activated receptor 2 by factor VIIa. Proc. Natl. Acad. Sci. USA. 2000;97:5255–5260. doi: 10.1073/pnas.97.10.5255. PubMed DOI PMC

Seidi K, Jahanban-Esfahlan R, Zarghami N. Tumor rim cells: from resistance to vascular targeting agents (VTAs) to complete tumor ablation. Tumor. Biol. 2017;39:1–15. doi: 10.1177/1010428317691001. PubMed DOI

Jahanban-Esfahlan R, Seidi K, Zarghami N. Tumor vascular infarction: prospects and challenges. Int. J. Hematol. 2017;105:244–256. doi: 10.1007/s12185-016-2171-3. PubMed DOI

Friedrich R, et al. Staphylocoagulase is a prototype for the mechanism of cofactor-induced zymogen activation. Nature. 2003;425:535–539. doi: 10.1038/nature01962. PubMed DOI

Friedrich R, et al. Structural basis for reduced staphylocoagulase-mediated bovine prothrombin activation. J. Biol. Chem. 2006;281:1188–1195. doi: 10.1074/jbc.M507957200. PubMed DOI PMC

Panizzi P, Friedrich R, Fuentes-Prior P, Bode W, Bock PE. The staphylocoagulase family of zymogen activator and adhesion proteins. Cell. Mol. Life. Sci. 2004;61:2793–2798. doi: 10.1007/s00018-004-4285-7. PubMed DOI PMC

Panizzi P, et al. Fibrinogen substrate recognition by staphylocoagulase.(pro)thrombin complexes. J. Biol. Chem. 2006;281:1179–1187. doi: 10.1074/jbc.M507956200. PubMed DOI PMC

Yokota N, et al. Contributions of thrombin targets to tissue factor-dependent metastasis in hyperthrombotic mice. J. Thromb. Haemost. 2014;12:71–81. doi: 10.1111/jth.12442. PubMed DOI PMC

Nierodzik ML, Karpatkin S. Thrombin induces tumor growth, metastasis, and angiogenesis: Evidence for a thrombin-regulated dormant tumor phenotype. Cancer. Cell. 2006;10:355–362. doi: 10.1016/j.ccr.2006.10.002. PubMed DOI

Cheng AG, et al. Contribution of coagulases towards Staphylococcus aureus disease and protective immunity. PLoS. Pathog. 2010;6:e1001036. doi: 10.1371/journal.ppat.1001036. PubMed DOI PMC

Bode W, Huber R. Induction of the bovine trypsinogen—trypsin transition by peptides sequentially similar to the N-terminus of trypsin. FEBS Lett. 1976;68:231–236. doi: 10.1016/0014-5793(76)80443-7. PubMed DOI PMC

Xiong JP, et al. Crystal structure of the extracellular segment of integrin alpha V beta 3 in complex with an Arg-Gly-Asp ligand. Science. 2002;296:151–155. doi: 10.1126/science.1069040. PubMed DOI

Pencik J, et al. STAT3 regulated ARF expression suppresses prostate cancer metastasis. Nat Commun. 2015;6:7736. doi: 10.1038/ncomms8736. PubMed DOI PMC

Huang ZJ, et al. Targeting the vasculature of colorectal carcinoma with a fused protein of (RGD)(3)-tTF. Sci. World. J. 2013;2013:637086. PubMed PMC

Mojovic B, Mojovic N, Tager M, Drummond MC. Staphylocoagulase as a hemostatic agent. Yale. J. Biol. Med. 1969;42:11–20. PubMed PMC

Jeljaszewicz J, Niewiarowski S, Poplawski A, Prokopowicz J, Worowski K. Intravascular coagulation and fibrinolysis by Staphylocoagulase. Comparision with thrombin. Thrombosis. Et. Diathesis. Haemorrhagica. 1965;13:457–469. PubMed

Soulier JP, et Prou-Wartelle O. Effets de l’injection de staphylocoagulase chez le lapin. Essais de prevention du syndrome de defibrination. Nouvelle. Revue. Franc. d’Hematologie. 1967;7:779–800. PubMed

Ruf W, Mueller BM. Thrombin generation and the pathogenesis of cancer. Semin. Thromb. Hemost. 2006;32(Suppl 1):61–68. doi: 10.1055/s-2006-939555. PubMed DOI

Zigler M, Kamiya T, Brantley EC, Villares GJ, Bar-Eli M. PAR-1 and thrombin: the ties that bind the microenvironment to melanoma metastasis. Cancer. Res. 2011;71:6561–6566. doi: 10.1158/0008-5472.CAN-11-1432. PubMed DOI PMC

Jiang X, et al. Formation of tissue factor-factor VIIa-factor Xa complex promotes cellular signaling and migration of human breast cancer cells. J. Thromb. Haemost. 2004;2:93–101. doi: 10.1111/j.1538-7836.2004.00545.x. PubMed DOI

Lima LG, Monteiro RQ. Activation of blood coagulation in cancer: implications for tumour progression. Biosci. Rep. 2013;33:e00064. doi: 10.1042/BSR20130057. PubMed DOI PMC

Reid HA, Chan KE. The paradox in therapeutic defibrination. Lancet. 1968;1:485–486. doi: 10.1016/S0140-6736(68)91463-3. PubMed DOI

Yang J, et al. The I-TASSER Suite: protein structure and function prediction. Nat. Meth. 2015;12:7–8. doi: 10.1038/nmeth.3213. PubMed DOI PMC

van Zundert GC, et al. The HADDOCK2.2 Web Server: User-Friendly Integrative Modeling of Biomolecular Complexes. J. Mol. Biol. 2016;428:720–725. doi: 10.1016/j.jmb.2015.09.014. PubMed DOI

Lindahl E, Hess B, van der Spoel D. A message-passing parallel molecular dynamics implementation. Comput. Phys. Commun. 1995;91:43–56. doi: 10.1016/0010-4655(95)00042-E. DOI

Schmid N, et al. Definition and testing of the GROMOS force-field versions 54A7 and 54B7. Eur. Biophys. J. 2011;40:843–856. doi: 10.1007/s00249-011-0700-9. PubMed DOI

Hermans J, Berendsen HJC, Van Gunsteren WF, Postma JPM. A consistent empirical potential for water–protein interactions. Biopolymers. 1984;23:1513–1518. doi: 10.1002/bip.360230807. DOI

Hess B, Bekker H, Berendsen HJC, Fraaije JGEM. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 1997;18:1463–1472. doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H. DOI

Miyamoto S, Kollman PA. Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Comput. Chem. 1992;13:952–962. doi: 10.1002/jcc.540130805. DOI

Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984;81:3684–3690. doi: 10.1063/1.448118. DOI

Darden T, York D, Pedersen L. Particle mesh Ewald: an Nlog(N):method for Ewald sums in large systems. J. Chem. Phys. 1993;98:10089–10092. doi: 10.1063/1.464397. DOI

Delano, W. The PyMOL Molecular Graphics System. Available from: citeulike-article-id:2816763. http://www.pymol.org (2002).

McAdow M, et al. Coagulases as determinants of protective immune responses against Staphylococcus aureus. Infect. Immun. 2012;80:3389–3398. doi: 10.1128/IAI.00562-12. PubMed DOI PMC

Kazemi Z, et al. Repurposing Treprostinil for Enhancing Hematopoietic Progenitor Cell Transplantation. Mol. Pharmacol. 2016;89:630–644. doi: 10.1124/mol.116.103267. PubMed DOI PMC

Minas TZ, et al. YK-4-279 effectively antagonizes EWS-FLI1 induced leukemia in a transgenic mouse model. Oncotarget. 2015;6:37678–37694. doi: 10.18632/oncotarget.5520. PubMed DOI PMC

Javaheri T, et al. Increased survival and cell cycle progression pathways are required for EWS/FLI1-induced malignant transformation. Cell death Dis. 2016;7:e2419. doi: 10.1038/cddis.2016.268. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...