RGD delivery of truncated coagulase to tumor vasculature affords local thrombotic activity to induce infarction of tumors in mice
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
28811469
PubMed Central
PMC5557930
DOI
10.1038/s41598-017-05326-9
PII: 10.1038/s41598-017-05326-9
Knihovny.cz E-resources
- MeSH
- Bacterial Proteins genetics metabolism MeSH
- Infarction pathology MeSH
- Coagulase genetics metabolism MeSH
- Cells, Cultured MeSH
- Humans MeSH
- Mutation MeSH
- Mice, Inbred C57BL MeSH
- Mice, Nude MeSH
- Cell Line, Tumor MeSH
- Neoplasms genetics metabolism therapy MeSH
- Oligopeptides genetics MeSH
- Neovascularization, Pathologic genetics metabolism pathology MeSH
- Recombinant Fusion Proteins genetics metabolism MeSH
- Thrombosis genetics metabolism MeSH
- Tumor Burden genetics MeSH
- Xenograft Model Antitumor Assays methods MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- arginyl-glycyl-aspartic acid MeSH Browser
- Bacterial Proteins MeSH
- Coagulase MeSH
- Oligopeptides MeSH
- Recombinant Fusion Proteins MeSH
Induction of thrombosis in tumor vasculature represents an appealing strategy for combating cancer. Herein, we combined unique intrinsic coagulation properties of staphylocoagulase with new acquired functional potentials introduced by genetic engineering, to generate a novel bi-functional fusion protein consisting of truncated coagulase (tCoa) bearing an RGD motif on its C-terminus for cancer therapy. We demonstrated that free coagulase failed to elicit any significant thrombotic activity. Conversely, RGD delivery of coagulase retained coagulase activity and afforded favorable interaction of fusion proteins with prothrombin and αvβ3 endothelial cell receptors, as verified by in silico, in vitro, and in vivo experiments. Although free coagulase elicited robust coagulase activity in vitro, only targeted coagulase (tCoa-RGD) was capable of producing extensive thrombosis, and subsequent infarction and massive necrosis of CT26 mouse colon, 4T1 mouse mammary and SKOV3 human ovarian tumors in mice. Additionally, systemic injections of lower doses of tCoa-RGD produced striking tumor growth inhibition of CT26, 4T1 and SKOV3 solid tumors in animals. Altogether, the nontoxic nature, unique shortcut mechanism, minimal effective dose, wide therapeutic window, efficient induction of thrombosis, local effects and susceptibility of human blood to coagulase suggest tCoa-RGD fusion proteins as a novel and promising anticancer therapy for human trials.
Drug Applied Research Center Tabriz University of Medical Sciences Tabriz Iran
Faculty of Veterinary Sciences The University of Melbourne Werribee Victoria Australia
North Research Center Pasture Institute of Iran Tehran Amol Iran
Structural Biology and Bioinformatics Research Group Khayyam Bioeconomy Institute Mashhad Iran
See more in PubMed
Jahanban-Esfahlan, R., de la Guardia, M., Ahmadi, D. & Yousefi, B. Modulating tumor hypoxia by nanomedicine for effective cancer therapy. J. Cell. Physiol, doi:10.1002/jcp.25859 (2017). PubMed
Liu C, et al. Prostate-specific membrane antigen directed selective thrombotic infarction of tumors. Cancer. Res. 2002;62:5470–5475. PubMed
Bieker R, et al. Infarction of tumor vessels by NGR-peptide-directed targeting of tissue factor: experimental results and first-in-man experience. Blood. 2009;113:5019–5027. doi: 10.1182/blood-2008-04-150318. PubMed DOI
Hu P, et al. Comparison of three different targeted tissue factor fusion proteins for inducing tumor vessel thrombosis. Cancer. Res. 2003;63:5046–5053. PubMed
Huang FY, et al. A fusion protein containing murine vascular endothelial growth factor and tissue factor induces thrombogenesis and suppression of tumor growth in a colon carcinoma model. J. Zhejiang. Univ. Sci. B. 2008;9:602–609. doi: 10.1631/jzus.B0820120. PubMed DOI PMC
Huang X, et al. Tumor infarction in mice by antibody-directed targeting of tissue factor to tumor vasculature. Science. 1997;275:547–550. doi: 10.1126/science.275.5299.547. PubMed DOI
Kessler T, et al. Inhibition of tumor growth by RGD peptide-directed delivery of truncated tissue factor to the tumor vasculature. Clin. Cancer. Res. 2005;11:6317–6324. doi: 10.1158/1078-0432.CCR-05-0389. PubMed DOI
Nilsson F, Kosmehl H, Zardi L, Neri D. Targeted delivery of tissue factor to the ED-B domain of fibronectin, a marker of angiogenesis, mediates the infarction of solid tumors in mice. Cancer. Res. 2001;61:711–716. PubMed
Ran S, et al. Infarction of solid hodgkin’s tumors in mice by antibody-directed targeting of tissue factor to tumor vasculature. Cancer. Res. 1998;58:4646–4653. PubMed
Brand C, et al. NG2 proteoglycan as a pericyte target for anticancer therapy by tumor vessel infarction with retargeted tissue factor. Oncotarget. 2016;7:6774–6789. doi: 10.18632/oncotarget.6725. PubMed DOI PMC
Liu S. Radiolabeled cyclic RGD peptides as integrin alpha(v)beta(3)-targeted radiotracers: maximizing binding affinity via bivalency. Bioconjug. Chem. 2009;20:2199–2213. doi: 10.1021/bc900167c. PubMed DOI PMC
Camerer E, Huang W, Coughlin SR. Tissue factor- and factor X-dependent activation of protease-activated receptor 2 by factor VIIa. Proc. Natl. Acad. Sci. USA. 2000;97:5255–5260. doi: 10.1073/pnas.97.10.5255. PubMed DOI PMC
Seidi K, Jahanban-Esfahlan R, Zarghami N. Tumor rim cells: from resistance to vascular targeting agents (VTAs) to complete tumor ablation. Tumor. Biol. 2017;39:1–15. doi: 10.1177/1010428317691001. PubMed DOI
Jahanban-Esfahlan R, Seidi K, Zarghami N. Tumor vascular infarction: prospects and challenges. Int. J. Hematol. 2017;105:244–256. doi: 10.1007/s12185-016-2171-3. PubMed DOI
Friedrich R, et al. Staphylocoagulase is a prototype for the mechanism of cofactor-induced zymogen activation. Nature. 2003;425:535–539. doi: 10.1038/nature01962. PubMed DOI
Friedrich R, et al. Structural basis for reduced staphylocoagulase-mediated bovine prothrombin activation. J. Biol. Chem. 2006;281:1188–1195. doi: 10.1074/jbc.M507957200. PubMed DOI PMC
Panizzi P, Friedrich R, Fuentes-Prior P, Bode W, Bock PE. The staphylocoagulase family of zymogen activator and adhesion proteins. Cell. Mol. Life. Sci. 2004;61:2793–2798. doi: 10.1007/s00018-004-4285-7. PubMed DOI PMC
Panizzi P, et al. Fibrinogen substrate recognition by staphylocoagulase.(pro)thrombin complexes. J. Biol. Chem. 2006;281:1179–1187. doi: 10.1074/jbc.M507956200. PubMed DOI PMC
Yokota N, et al. Contributions of thrombin targets to tissue factor-dependent metastasis in hyperthrombotic mice. J. Thromb. Haemost. 2014;12:71–81. doi: 10.1111/jth.12442. PubMed DOI PMC
Nierodzik ML, Karpatkin S. Thrombin induces tumor growth, metastasis, and angiogenesis: Evidence for a thrombin-regulated dormant tumor phenotype. Cancer. Cell. 2006;10:355–362. doi: 10.1016/j.ccr.2006.10.002. PubMed DOI
Cheng AG, et al. Contribution of coagulases towards Staphylococcus aureus disease and protective immunity. PLoS. Pathog. 2010;6:e1001036. doi: 10.1371/journal.ppat.1001036. PubMed DOI PMC
Bode W, Huber R. Induction of the bovine trypsinogen—trypsin transition by peptides sequentially similar to the N-terminus of trypsin. FEBS Lett. 1976;68:231–236. doi: 10.1016/0014-5793(76)80443-7. PubMed DOI PMC
Xiong JP, et al. Crystal structure of the extracellular segment of integrin alpha V beta 3 in complex with an Arg-Gly-Asp ligand. Science. 2002;296:151–155. doi: 10.1126/science.1069040. PubMed DOI
Pencik J, et al. STAT3 regulated ARF expression suppresses prostate cancer metastasis. Nat Commun. 2015;6:7736. doi: 10.1038/ncomms8736. PubMed DOI PMC
Huang ZJ, et al. Targeting the vasculature of colorectal carcinoma with a fused protein of (RGD)(3)-tTF. Sci. World. J. 2013;2013:637086. PubMed PMC
Mojovic B, Mojovic N, Tager M, Drummond MC. Staphylocoagulase as a hemostatic agent. Yale. J. Biol. Med. 1969;42:11–20. PubMed PMC
Jeljaszewicz J, Niewiarowski S, Poplawski A, Prokopowicz J, Worowski K. Intravascular coagulation and fibrinolysis by Staphylocoagulase. Comparision with thrombin. Thrombosis. Et. Diathesis. Haemorrhagica. 1965;13:457–469. PubMed
Soulier JP, et Prou-Wartelle O. Effets de l’injection de staphylocoagulase chez le lapin. Essais de prevention du syndrome de defibrination. Nouvelle. Revue. Franc. d’Hematologie. 1967;7:779–800. PubMed
Ruf W, Mueller BM. Thrombin generation and the pathogenesis of cancer. Semin. Thromb. Hemost. 2006;32(Suppl 1):61–68. doi: 10.1055/s-2006-939555. PubMed DOI
Zigler M, Kamiya T, Brantley EC, Villares GJ, Bar-Eli M. PAR-1 and thrombin: the ties that bind the microenvironment to melanoma metastasis. Cancer. Res. 2011;71:6561–6566. doi: 10.1158/0008-5472.CAN-11-1432. PubMed DOI PMC
Jiang X, et al. Formation of tissue factor-factor VIIa-factor Xa complex promotes cellular signaling and migration of human breast cancer cells. J. Thromb. Haemost. 2004;2:93–101. doi: 10.1111/j.1538-7836.2004.00545.x. PubMed DOI
Lima LG, Monteiro RQ. Activation of blood coagulation in cancer: implications for tumour progression. Biosci. Rep. 2013;33:e00064. doi: 10.1042/BSR20130057. PubMed DOI PMC
Reid HA, Chan KE. The paradox in therapeutic defibrination. Lancet. 1968;1:485–486. doi: 10.1016/S0140-6736(68)91463-3. PubMed DOI
Yang J, et al. The I-TASSER Suite: protein structure and function prediction. Nat. Meth. 2015;12:7–8. doi: 10.1038/nmeth.3213. PubMed DOI PMC
van Zundert GC, et al. The HADDOCK2.2 Web Server: User-Friendly Integrative Modeling of Biomolecular Complexes. J. Mol. Biol. 2016;428:720–725. doi: 10.1016/j.jmb.2015.09.014. PubMed DOI
Lindahl E, Hess B, van der Spoel D. A message-passing parallel molecular dynamics implementation. Comput. Phys. Commun. 1995;91:43–56. doi: 10.1016/0010-4655(95)00042-E. DOI
Schmid N, et al. Definition and testing of the GROMOS force-field versions 54A7 and 54B7. Eur. Biophys. J. 2011;40:843–856. doi: 10.1007/s00249-011-0700-9. PubMed DOI
Hermans J, Berendsen HJC, Van Gunsteren WF, Postma JPM. A consistent empirical potential for water–protein interactions. Biopolymers. 1984;23:1513–1518. doi: 10.1002/bip.360230807. DOI
Hess B, Bekker H, Berendsen HJC, Fraaije JGEM. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 1997;18:1463–1472. doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H. DOI
Miyamoto S, Kollman PA. Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Comput. Chem. 1992;13:952–962. doi: 10.1002/jcc.540130805. DOI
Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984;81:3684–3690. doi: 10.1063/1.448118. DOI
Darden T, York D, Pedersen L. Particle mesh Ewald: an Nlog(N):method for Ewald sums in large systems. J. Chem. Phys. 1993;98:10089–10092. doi: 10.1063/1.464397. DOI
Delano, W. The PyMOL Molecular Graphics System. Available from: citeulike-article-id:2816763. http://www.pymol.org (2002).
McAdow M, et al. Coagulases as determinants of protective immune responses against Staphylococcus aureus. Infect. Immun. 2012;80:3389–3398. doi: 10.1128/IAI.00562-12. PubMed DOI PMC
Kazemi Z, et al. Repurposing Treprostinil for Enhancing Hematopoietic Progenitor Cell Transplantation. Mol. Pharmacol. 2016;89:630–644. doi: 10.1124/mol.116.103267. PubMed DOI PMC
Minas TZ, et al. YK-4-279 effectively antagonizes EWS-FLI1 induced leukemia in a transgenic mouse model. Oncotarget. 2015;6:37678–37694. doi: 10.18632/oncotarget.5520. PubMed DOI PMC
Javaheri T, et al. Increased survival and cell cycle progression pathways are required for EWS/FLI1-induced malignant transformation. Cell death Dis. 2016;7:e2419. doi: 10.1038/cddis.2016.268. PubMed DOI PMC