Seedling Establishment of Tall Fescue Exposed to Long-Term Starvation Stress
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
27832166
PubMed Central
PMC5104456
DOI
10.1371/journal.pone.0166131
PII: PONE-D-16-28151
Knihovny.cz E-zdroje
- MeSH
- alfa-amylasy metabolismus MeSH
- buněčná stěna metabolismus fyziologie MeSH
- časové faktory MeSH
- Festuca metabolismus fyziologie MeSH
- fyziologická adaptace fyziologie účinky záření MeSH
- fyziologický stres fyziologie MeSH
- gibereliny metabolismus MeSH
- kořeny rostlin metabolismus fyziologie MeSH
- kotyledon metabolismus fyziologie MeSH
- kyselina abscisová metabolismus MeSH
- lignin metabolismus MeSH
- nízká teplota MeSH
- rostlinné proteiny metabolismus MeSH
- sacharidy analýza MeSH
- semenáček fyziologie MeSH
- světlo MeSH
- tma MeSH
- vápník metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- alfa-amylasy MeSH
- gibberellic acid MeSH Prohlížeč
- gibereliny MeSH
- kyselina abscisová MeSH
- lignin MeSH
- rostlinné proteiny MeSH
- sacharidy MeSH
- vápník MeSH
In germinating seeds under unfavorable environmental conditions, the mobilization of stores in the cotyledons is delayed, which may result in a different modulation of carbohydrates balance and a decrease in seedling vigor. Tall fescue (Festuca arundinacea Schreb.) caryopses grown at 4°C in the dark for an extended period in complete absence of nutrients, showed an unexpected ability to survive. Seedlings grown at 4°C for 210 days were morphologically identical to seedlings grown at 23°C for 21 days. After 400 days, seedlings grown at 4°C were able to differentiate plastids to chloroplast in just few days once transferred to the light and 23°C. Tall fescue exposed to prolonged period at 4°C showed marked anatomical changes: cell wall thickening, undifferentiated plastids, more root hairs and less xylem lignification. Physiological modifications were also observed, in particular related to sugar content, GA and ABA levels and amylolytic enzymes pattern. The phytohormones profiles exhibited at 4 and 23°C were comparable when normalized to the respective physiological states. Both the onset and the completion of germination were linked to GA and ABA levels, as well as to the ratio between these two hormones. All plants showed a sharp decline in carbohydrate content, with a consequent onset of gradual sugar starvation. This explained the slowed then full arrest in growth under both treatment regimes. The analysis of amylolytic activity showed that Ca2+ played a central role in the stabilization of several isoforms. Overall, convergence of starvation and hormone signals meet in crosstalk to regulate germination, growth and development in tall fescue.
Department of Agriculture Food and Environment University of Pisa Pisa Italy
Federal University of Grande Dourados Dourados Brazil
Laboratory of Ecological Plant Physiology Global Change Research Institute CAS Brno Czech Republic
Zobrazit více v PubMed
Yu S-M. Cellular and genetic responses of plants to sugar starvation. Plant Physiol. 1999;121(3):687–93. 10.1104/pp.121.3.687 PubMed DOI PMC
Paparelli E, Parlanti S, Gonzali S, Novi G, Mariotti L, Ceccarelli N, et al. Nighttime sugar starvation orchestrates gibberellin biosynthesis and plant growth in Arabidopsis. The Plant Cell Online. 2013;25(10):3760–9. 10.1105/tpc.113.115519 PubMed DOI PMC
Ho S-L, Chao Y-C, Tong W-F, Yu S-M. Sugar coordinately and differentially regulates growth- and stress-related gene expression via a complex signal transduction network and multiple control mechanisms. Plant Physiol. 2001;125(2):877–90. 10.1104/pp.125.2.877 PubMed DOI PMC
Karssen CM, Laçka E. A revision of the hormone balance theory of seed dormancy: studies on gibberellin and/or abscisic acid-deficient mutants of Arabidopsis thaliana In: Bopp M, editor. Plant Growth Substances 1985. Proceedings in Life Sciences: Springer Berlin Heidelberg; 1986. p. 315–23.
Bewley JD. Seed germination and dormancy. The Plant Cell. 1997;9(7):1055–66. 10.1105/tpc.9.7.1055 PubMed DOI PMC
Penfield S, King J. Towards a systems biology approach to understanding seed dormancy and germination. Proceedings of the Royal Society B: Biological Sciences. 2009;276(1673):3561–9. 10.1098/rspb.2009.0592 PubMed DOI PMC
Finch-Savage WE, Leubner-Metzger G. Seed dormancy and the control of germination. New Phytol. 2006;171(3):501–23. 10.1111/j.1469-8137.2006.01787.x PubMed DOI
Bush DS, Sticher L, van Huystee R, Wagner D, Jones RL. The calcium requirement for stability and enzymatic activity of two isoforms of barley aleurone α-amylase. J Biol Chem. 1989;264(32):19392–8. PubMed
Dierking RM, Kallenbach RL. Mediterranean and Continental tall fescue: II. Effects of cold, nonfreezing temperatures on leaf extension, proline, fructan, and abscisic acid. Crop Sci. 2012;52(1):460–9. 10.2135/cropsci2011.03.0160 DOI
Hopkins AA, Saha MC, Wang ZY. Breeding, Genetics, and Cultivars In: Fribourg HA, Hannaway DB, West CP, editors. Tall Fescue for the Twenty-first Century. Agronomy Monographs: American Society of Agronomy, Crop Science Society of America, Soil Science Society of America; 2009. p. 339–66.
Ceccarelli M, Esposto M, Roscini C, Sarri V, Frediani M, Gelati M, et al. Genome plasticity in Festuca arundinacea: direct response to temperature changes by redundancy modulation of interspersed DNA repeats. Theor Appl Genet. 2002;104(6–7):901–7. 10.1007/s00122-001-0862-4 PubMed DOI
Ceccarelli M, Giordani T, Natali L, Cavallini A, Cionini PG. Genome plasticity during seed germination in Festuca arundinacea. Theor Appl Genet. 1997;94(3–4):309–15. 10.1007/s001220050416 DOI
Burns JC, Chamblee DS. Adaptation In: Buckner RC, Bush LP, editors. Tall Fescue. Agronomy Monograph: American Society of Agronomy, Crop Science Society of America, Soil Science Society of America; 1979. p. 9–30.
Bartholomew PW, Williams RD. Cool-season grass development response to accumulated temperature under a range of temperature regimes. Crop Sci. 2005;45(2):529–34. 10.2135/cropsci2005.0529 DOI
Saxena P, Huang B, Bonos SA, Meyer WA. Photoperiod and temperature effects on rhizome production and tillering rate in tall fescue [Lolium arundinaceum (Schreb.) Darby.]. Crop Sci. 2014;54(3):1205–10. 10.2135/cropsci2013.08.0565 DOI
Lu H, Shen J, Jin X, Hannaway DB, Daly C, Halbleib MD. Determining optimal seeding times for tall fescue using germination studies and spatial climate analysis. Agric For Meteorol. 2008;148(6–7):931–41. 10.1016/j.agrformet.2008.01.004 DOI
Thomas H, Stoddart JL. Temperature sensitivities of Festuca arundinacea Schreb. and Dactylis glomerata L. ecotypes. New Phytol. 1995;130(1):125–34. 10.1111/j.1469-8137.1995.tb01822.x DOI
Zhang H, McGill CR, Irving LJ, Kemp PD, Zhou D. A modified thermal time model to predict germination rate of ryegrass and tall fescue at constant temperatures. Crop Sci. 2013;53(1):240–9. 10.2135/cropsci2012.02.0085 DOI
Danielson HR, Toole VK. Action of temperature and light on the control of seed germination in Alta tall fescue (Festuca arundinacea Schreb.). Crop Sci. 1976;16(3):317–20. 10.2135/cropsci1976.0011183X001600030001x DOI
Qian YL, Suplick MR. Interactive effects of salinity and temperature on Kentucky bluegrass and tall fescue seed germination. Int Turfgrass Soc Res J. 2001;9(Part 1):334–9.
Gianinetti A, Vernieri P. On the role of abscisic acid in seed dormancy of red rice. J Exp Bot. 2007;58(12):3449–62. 10.1093/jxb/erm198 PubMed DOI
Vernieri P, Perata P, Armellini D, Bugnoli M, Presentini R, Lorenzi R, et al. Solid phase radioimmunoassay for the quantitation of abscisic acid in plant crude extracts using a new monoclonal antibody. J Plant Physiol. 1989;134(4):441–6. 10.1016/S0176-1617(89)80007-0 DOI
Walker-Simmons MK, Reaney MJT, Quarrie SA, Perata P, Vernieri P, Abrams SR. Monoclonal antibody recognition of abscisic acid analogs. Plant Physiol. 1991;95(1):46–51. 10.1104/pp.95.1.46 PubMed DOI PMC
Ikeda A, Sonoda Y, Vernieri P, Perata P, Hirochika H, Yamaguchi J. The slender rice mutant, with constitutively activated gibberellin signal transduction, has enhanced capacity for abscisic acid level. Plant Cell Physiol. 2002;43(9):974–9. 10.1093/pcp/pcf115 PubMed DOI
Jones RL, Varner JE. The bioassay of gibberellins. Planta. 1967;72(2):155–61. 10.1007/BF00387479 PubMed DOI
Tobias RB, Boyer CD, Shannon JC. Alterations in carbohydrate intermediates in the endosperm of starch-deficient maize (Zea mays L.) genotypes. Plant Physiol. 1992;99(1):146–52. PubMed PMID: WOS:A1992HU48500023 PubMed PMC
Pompeiano A, Fanucchi F, Guglielminetti L. Amylolytic activity and carbohydrate levels in relation to coleoptile anoxic elongation in Oryza sativa genotypes. J Plant Res. 2013;126(6):787–94. 10.1007/s10265-013-0567-1 PubMed DOI
Guglielminetti L, Yamaguchi J, Perata P, Alpi A. Amylolytic activities in cereal seeds under aerobic and anaerobic conditions. Plant Physiol. 1995;109(3):1069–76. 10.1104/pp.109.3.1069 PubMed DOI PMC
Guglielminetti L, Busilacchi HA, Alpi A. Effect of anoxia on α-amylase induction in maize caryopsis. J Plant Res. 2000;113(2):185–92. 10.1007/pl00013929 DOI
Perata P, Pozueta-Romero J, Akazawa T, Yamaguchi J. Effect of anoxia on starch breakdown in rice and wheat seeds. Planta. 1992;188(4):611–8. 10.1007/BF00197056 PubMed DOI
Perata P, Geshi N, Yamaguchi J, Akazawa T. Effect of anoxia on the induction of α-amylase in cereal seeds. Planta. 1993;191(3):402–8.
R Core Team. R: A language and environment for statistical computing 3.2.3 ed. Vienna, Austria: R Foundation for Statistical Computing; 2015.
de Mendiburu F. agricolae: statistical procedures for agricultural research. R package version 1.2–1. 2014:[60 p.]. Available from: doi: http://CRAN.R-project.org/package=agricolae
Durand J-L, SchÄUfele R, Gastal F. Grass leaf elongation rate as a function of developmental stage and temperature: morphological analysis and modelling. Ann Bot (Lond). 1999;83(5):577–88. 10.1006/anbo.1999.0864 DOI
Hurry VM, Strand A, Tobiaeson M, Gardestrom P, Oquist G. Cold hardening of spring and winter wheat and rape results in differential effects on growth, carbon metabolism, and carbohydrate content. Plant Physiol. 1995;109(2):697–706. 10.1104/pp.109.2.697 PubMed DOI PMC
Yoshida R, Kanno A, Sato T, Kameya T. Cool-temperature-induced chlorosis in rice plants (I. Relationship between the induction and a disturbance of etioplast development). Plant Physiol. 1996;110(3):997–1005. 10.1104/pp.110.3.997 PubMed DOI PMC
Thomashow MF. Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol. 1999;50:571–99. 10.1016/0223-5234(96)83969-9 PubMed DOI
Kim K-N, Cheong YH, Grant JJ, Pandey GK, Luan S. CIPK3, a calcium sensor–associated protein kinase that regulates abscisic acid and cold signal transduction in arabidopsis. The Plant Cell Online. 2003;15(2):411–23. 10.1105/tpc.006858 PubMed DOI PMC
Yamaguchi S. Gibberellin metabolism and its regulation. Annu Rev Plant Biol. 2008;59(1):225–51. 10.1146/annurev.arplant.59.032607.092804 . PubMed DOI
Stavang JA, Lindgård B, Erntsen A, Lid SE, Moe R, Olsen JE. Thermoperiodic stem elongation involves transcriptional regulation of gibberellin deactivation in pea. Plant Physiol. 2005;138(4):2344–53. 10.1104/pp.105.063149 PubMed DOI PMC
Anchordoguy TJ, Rudolph AS, Carpenter JF, Crowe JH. Modes of interaction of cryoprotectants with membrane phospholipids during freezing. Cryobiology. 1987;24(4):324–31. . PubMed
Bush DS, Cornejo M-J, Huang C-N, Jones RL. Ca2+-stimulated secretion of α-amylase during development in barley aleurone protoplasts. Plant Physiol. 1986;82(2):566–74. 10.1104/pp.82.2.566 PubMed DOI PMC