Variability Studies of Two Prunus-Infecting Fabaviruses with the Aid of High-Throughput Sequencing
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
PubMed
29670059
PubMed Central
PMC5923498
DOI
10.3390/v10040204
PII: v10040204
Knihovny.cz E-zdroje
- Klíčová slova
- fabavirus, high-throughput sequencing, intrahost variability, novel species, phylogenetics, plant virus, prunus,
- MeSH
- Fabavirus genetika MeSH
- genetická variace * MeSH
- genom virový MeSH
- nemoci rostlin virologie MeSH
- slivoň virologie MeSH
- stanovení celkové genové exprese MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
During their lifetime, perennial woody plants are expected to face multiple infection events. Furthermore, multiple genotypes of individual virus species may co-infect the same host. This may eventually lead to a situation where plants harbor complex communities of viral species/strains. Using high-throughput sequencing, we describe co-infection of sweet and sour cherry trees with diverse genomic variants of two closely related viruses, namely prunus virus F (PrVF) and cherry virus F (CVF). Both viruses are most homologous to members of the Fabavirus genus (Secoviridae family). The comparison of CVF and PrVF RNA2 genomic sequences suggests that the two viruses may significantly differ in their expression strategy. Indeed, similar to comoviruses, the smaller genomic segment of PrVF, RNA2, may be translated in two collinear proteins while CVF likely expresses only the shorter of these two proteins. Linked with the observation that identity levels between the coat proteins of these two viruses are significantly below the family species demarcation cut-off, these findings support the idea that CVF and PrVF represent two separate Fabavirus species.
Zobrazit více v PubMed
Rubio M., Martínez-Gómez P., Marais A., Sánchez-Navarro J.A., Pallás V., Candresse T. Recent advances and prospects in Prunus virology. Ann. Appl. Biol. 2017;171:125–138. doi: 10.1111/aab.12371. DOI
He Y., Cai L., Zhou L., Yang Z., Hong N., Wang G., Li S., Xu W. Deep sequencing reveals the first fabavirus infecting peach. Sci. Rep. 2017;7:1–11. doi: 10.1038/s41598-017-11743-7. PubMed DOI PMC
Hadidi A., Barba M., Candresse T., Jelkmann W. Virus and Virus-like Diseases of Pome and Stone Fruits. Amer Phytopathological Society; Saint Paul, MN, USA: 2011.
Villamor D.E.V., Pillai S.S., Eastwell K.C. High throughput sequencing reveals a novel fabavirus infecting sweet cherry. Arch. Virol. 2017;163:811–816. doi: 10.1007/s00705-016-3141-z. PubMed DOI
Lenz O., Přibylová J., Fránová J., Koloniuk I., Špak J. Identification and characterization of a new member of the genus Luteovirus from cherry. Arch. Virol. 2017;162:587–590. doi: 10.1007/s00705-016-3125-z. PubMed DOI
Glasa M., Šoltys K., Vozárová Z., Predajňa L., Sihelská N., Šubr Z., Candresse T. High intra-host cherry virus a population heterogeneity in cherry trees in Slovakia. J. Plant Pathol. 2017;99:745–752.
Giallonardo F.D., Töpfer A., Rey M., Prabhakaran S., Duport Y., Leemann C., Schmutz S., Campbell N.K., Joos B., Lecca M.R., et al. Full-length haplotype reconstruction to infer the structure of heterogeneous virus populations. Nucleic Acids Res. 2014;42:e115. doi: 10.1093/nar/gku537. PubMed DOI PMC
Thompson J.R., Dasgupta I., Fuchs M., Iwanami T., Karasev A.V., Petrzik K., Sanfaçon H., Tzanetakis I., van der Vlugt R., Wetzel T., et al. ICTV Report Consortium ICTV Virus Taxonomy Profile: Secoviridae. J. Gener. Virol. 2017;98:529–531. PubMed PMC
Šafářová D., Faure C., Marais A., Suchá J., Paprštein F., Navrátil M., Candresse T. First report of Prunus virus F infecting sour cherry in the Czech Republic. Plant Dis. 2017;101 doi: 10.1094/PDIS-09-16-1289-PDN. PubMed DOI
Morris T.J., Dodds J.A. Isolation and analysis of double-stranded RNA from virus-infected plant and fungal tissue. Phytopathology. 1979;69:854–858. doi: 10.1094/Phyto-69-854. DOI
Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 2013;30:2725–2729. doi: 10.1093/molbev/mst197. PubMed DOI PMC
Edgar R.C. MUSCLE: A multiple sequence alignment method with reduced time and space complexity. BMC Bioinform. 2004;5:113. doi: 10.1186/1471-2105-5-113. PubMed DOI PMC
Korber B. HIV signature and sequence variation analysis. In: Rodrigo A.G., Learn J., Gerald H., editors. Computational Analysis of HIV Molecular Sequences. Springer; Dordrecht, The Netherlands: 2000. pp. 55–72.
Ferriol I., Rangel E.A., Panno S., Davino S., Han C.G., Olmos A., Rubio L. Rapid detection and discrimination of fabaviruses by flow-through hybridisation with genus- and species-specific riboprobes. Ann. Appl. Biol. 2015;167:26–35. doi: 10.1111/aab.12204. DOI
Kozak M. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell. 1986;44:283–292. doi: 10.1016/0092-8674(86)90762-2. PubMed DOI
Martin D.P., Murrell B., Golden M., Khoosal A., Muhire B. RDP4: Detection and analysis of recombination patterns in virus genomes. Virus Evol. 2015;1:1–5. doi: 10.1093/ve/vev003. PubMed DOI PMC
Sanfaçon H., Wellink J., Le Gall O., Karasev A., van der Vlugt R., Wetzel T. Secoviridae: A proposed family of plant viruses within the order Picornavirales that combines the families Sequiviridae and Comoviridae, the unassigned genera Cheravirus and Sadwavirus, and the proposed genus Torradovirus. Arch. Virol. 2009;154:899–907. doi: 10.1007/s00705-009-0367-z. PubMed DOI
Sanfaçon H., Iwanami T., Karasev A.V., van der Vlugt R., Wellink J., Wetzel T., Yoshikawa N. Family—Secoviridae. In: King A.M.Q., Adams M.J., Carstens E.B., Lefkowitz E.J., editors. Virus Taxonomy. Elsevier; San Diego, CA, USA: 2012. pp. 881–899.
Xia X. The rate heterogeneity of nonsynonymous substitutions in mammalian mitochondrial genes. Mol. Biol. Evol. 1998;15:336–344. doi: 10.1093/oxfordjournals.molbev.a025930. PubMed DOI
Katoh K., Standley D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC
Wellink J., Verver J., Van Kammen A. Mutational analysis of AUG codons of cowpea mosaic virus M RNA. Biochimie. 1993;75:741–747. doi: 10.1016/0300-9084(93)90105-2. PubMed DOI
Lin J., Guo J., Finer J., Dorrance A.E., Redinbaugh M.G., Qu F. The bean pod mottle virus RNA2-encoded 58-kilodalton protein P58 is required in cis for RNA2 Accumulation. J. Virol. 2014;88:3213–3222. doi: 10.1128/JVI.03301-13. PubMed DOI PMC
Cann A.J. Principles of Molecular Virology. 4th ed. Elsevier Academic Press; London, UK: 2005. pp. 1–332.
Jridi C., Martin J.F., Marie-Jeanne V., Labonne G., Blanc S. Distinct viral populations differentiate and evolve independently in a single perennial host plant. J. Virol. 2006;80:2349–2357. doi: 10.1128/JVI.80.5.2349-2357.2006. PubMed DOI PMC
Gonzalez-Jara P., Fraile A., Canto T., García-Arenal F. The Multiplicity of infection of a plant virus varies during colonization of its eukaryotic host. J. Virol. 2009;83:7487–7494. doi: 10.1128/JVI.00636-09. PubMed DOI PMC
Elena S.F., Bernet G.P., Carrasco J.L. The games plant viruses play. Curr. Opin. Virol. 2014;8:62–67. doi: 10.1016/j.coviro.2014.07.003. PubMed DOI
Domingo E., Sheldon J., Perales C. Viral quasispecies evolution. Microbiol. Mol. Biol. Rev. 2012;76:159–216. doi: 10.1128/MMBR.05023-11. PubMed DOI PMC
Hall J.S., French R., Hein G.L., Morris T.J., Stenger D.C. Three distinct mechanisms facilitate genetic isolation of sympatric wheat streak mosaic virus lineages. Virology. 2001;282:230–236. doi: 10.1006/viro.2001.0841. PubMed DOI
Folimonova S.Y., Robertson C.J., Shilts T., Folimonov A.S., Hilf M.E., Garnsey S.M., Dawson W.O. Infection with strains of Citrus tristeza virus does not exclude superinfection by other strains of the virus. J. Virol. 2010;84:1314–1325. doi: 10.1128/JVI.02075-09. PubMed DOI PMC
Folimonova S.Y., Harper S.J., Leonard M.T., Triplett E.W., Shilts T. Superinfection exclusion by Citrus tristeza virus does not correlate with the production of viral small RNAs. Virology. 2014;468–470:462–471. doi: 10.1016/j.virol.2014.08.031. PubMed DOI
Lauring A.S., Andino R. Quasispecies theory and the behavior of RNA viruses. PLoS Pathog. 2010;6:e1001005. doi: 10.1371/journal.ppat.1001005. PubMed DOI PMC
Morroni M., Thompson J.R., Tepfer M. Analysis of recombination between viral RNAs and transgene mRNA under conditions of high selection pressure in favour of recombinants. J. Gen. Virol. 2009;90:2798–2807. doi: 10.1099/vir.0.013771-0. PubMed DOI