• This record comes from PubMed

Iron Oxide-Cobalt Nanocatalyst for O-tert-Boc Protection and O-Arylation of Phenols

. 2018 Apr 17 ; 8 (4) : . [epub] 20180417

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Efficient and general protocols for the O-tert-boc protection and O-arylation of phenols were developed in this paper using a recyclable magnetic Fe₃O₄-Co₃O₄ nanocatalyst (Nano-Fe-Co), which is easily accessible via simple wet impregnation techniques in aqueous mediums from inexpensive precursors. The results showed the catalysts were well characterized by XRD (X-ray Diffraction), ICP-AES (Inductive Coupled Plasma Atomic Emission Spectroscopy), TEM (Transmission Electron Microscopy), TOF-SIMS (Time-Of-Flight Secondary Ion Mass Spectrometry) and XPS (X-ray Photoelectron Spectroscopy). The O-tert-boc protection and O-arylation of phenols was accomplished in good to excellent yields (85–95%) and the catalyst was reusable and recyclable with no loss of catalytic activity for at least six repetitions.

See more in PubMed

Gawande M.B., Bonifacio V.D.B., Luque R., Branco P.S., Varma R.S. Benign by Design: Catalyst-Free In-Water, On-Water Green Chemical Methodologies in Organic Synthesis. Chem. Soc. Rev. 2013;42:5522–5551. doi: 10.1039/c3cs60025d. PubMed DOI

Gawande M.B., Bonifácio V.D.B., Luque R., Branco P.S., Varma R.S. Solvent-Free and Catalysts-Free Chemistry: A Benign Pathway to Sustainability. ChemSusChem. 2014;7:24–44. doi: 10.1002/cssc.201300485. PubMed DOI

Mojtahedi M.M., Niknejad N., Veisi H. A Mild and Green Method for the N-BOC Protection of Amines without Assistant of Catalyst Under Solvent-free Conditions. Lett. Org. Chem. 2013;10:121–125. doi: 10.2174/1570178611310020010. DOI

Anastas P.T., Bartlett L.B., Kirchhoff M.M., Williamson T.C. The Role of Catalysis in the Design, Development and Implementation of Green Chemistry. Catal. Today. 2000;55:11–22. doi: 10.1016/S0920-5861(99)00222-9. DOI

Corma A., Garcia H. Supported Gold Nanoparticles as Catalysts for Organic Reactions. Chem. Soc. Rev. 2008;37:2096–2126. doi: 10.1039/b707314n. PubMed DOI

Davis S.E., Ide M.S., Davis R.J. Selective Oxidation of Alcohols and Aldehydes over Supported Metal Nanoparticles. Green Chem. 2013;15:17–45. doi: 10.1039/C2GC36441G. DOI

Kunde S.P., Kanade K.G., Karale B.K., Akolkar H.N., Randhavane P.V., Shinde S.T. Synthesis and Characterization of Nanostructured Cu-ZnO: An Efficient Catalyst for the Preparation of (E)-3-Styrylchromones. Arab. J. Chem. 2017 doi: 10.1016/j.arabjc.2016.12.015. DOI

Daniel M.C., Astruc D. Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties and Applications toward Biology, Catalysis and Nanotechnology. Chem. Rev. 2004;104:293–346. doi: 10.1021/cr030698+. PubMed DOI

Kalidindi S.B., Jagirdar B.R. Nanocatalysis and Prospects of Green Chemistry. ChemSusChem. 2012;5:65–75. doi: 10.1002/cssc.201100377. PubMed DOI

Chen P., Zhou X., Shen H., Andoy N.M., Choudhary E., Han K.-S., Liu G., Meng W. Single-Molecule Fluorescence Imaging of Nanocatalytic Processes. Chem. Soc. Rev. 2010;39:4560–4570. doi: 10.1039/b909052p. PubMed DOI

Schatz A., Reiser O., Stark W.J. Nanoparticles as Semi-Heterogeneous Catalyst Supports. Chem. Eur. J. 2010;16:8950–8967. doi: 10.1002/chem.200903462. PubMed DOI

Schlogl R., Hamid S.B.A. Nanocatalysis: Mature Science Revisited or Something Really New? Angew. Chem. Int. Ed. 2004;43:1628–1637. doi: 10.1002/anie.200301684. PubMed DOI

Murzin D.Y. Nanokinetics for Nanocatalysis. Catal. Sci. Technol. 2011;1:380–384. doi: 10.1039/c0cy00084a. DOI

Baig R.B.N., Varma R.S. Magnetically Retrievable Catalysts for Organic Synthesis. Chem. Commun. 2013;49:752–770. doi: 10.1039/C2CC35663E. PubMed DOI

Gawande M.B., Branco P.S., Varma R.S. Nano-Magnetite (Fe3O4) as a Support for Recyclable Catalysts in the Development of Sustainable Methodologies. Chem. Soc. Rev. 2013;42:3371–3393. doi: 10.1039/c3cs35480f. PubMed DOI

Jansat S., Picurelli D., Pelzer K., Philippot K., Gómez M., Muller G., Lecante P., Chaudret B. Synthesis, Characterization and Catalytic Reactivity of Ruthenium Nanoparticles Stabilized by Chiral N-Donor Ligands. New J. Chem. 2006;30:115–122. doi: 10.1039/B509378C. DOI

Li J., Zhang Y., Han D., Gao Q., Li C. Asymmetric Transfer Hydrogenation Using Recoverable Ruthenium Catalyst Immobilized in to Magnetic Mesoporous Silica. J. Mol. Catal. A Chem. 2009;298:31–35. doi: 10.1016/j.molcata.2008.09.027. DOI

Jansat S., Gómez M., Philippot K., Muller G., Guiu E., Claver C., Castillón S., Chaudret B. A Case for Enantioselective Allylic Alkylation Catalyzed by Palladium Nanoparticles. J. Am. Chem. Soc. 2004;126:1592–1593. doi: 10.1021/ja036132k. PubMed DOI

Molvinger K., Lopez M., Court J. Enantioselective Borane Reduction of Ketones with Oxazaborolidines Boron-bound to Nickel Boride Nanoparticles. Tetrahedron Lett. 1999;40:8375–8378. doi: 10.1016/S0040-4039(99)01871-7. DOI

Wang B.G., Ma B.C., Wang Q., Wang W. Superparamagnetic Nanoparticle-Supported (S)-Diphenylprolinol Trimethylsilyl Ether as a Recyclable Catalyst for Asymmetric Michael Addition in Water. Adv. Synth. Catal. 2010;352:2923–2928. doi: 10.1002/adsc.201000508. DOI

Jin M.J., Lee D.H. A Practical Heterogeneous Catalyst for the Suzuki, Sonogashira and Stille Coupling Reactions of Unreactive Aryl Chlorides. Angew. Chem. Int. Ed. 2010;49:1119–1122. doi: 10.1002/anie.200905626. PubMed DOI

Gleeson O., Tekoriute R., Gunko Y.K., Connon S.J. The First Magnetic Nanoparticle-Supported Chiral DMAP Analogue: Highly Enantioselective Acylation and Excellent Recyclability. Chem. Eur. J. 2009;15:5669–5673. doi: 10.1002/chem.200900532. PubMed DOI

Yang H.Q., Wang Y., Qin Y., Chong Y., Yang Q., Li G., Zhang L., Li W. One-pot Preparation of Magnetic N-Heterocyclic Carbene-Functionalized Silica Nanoparticles for the Suzuki–Miyaura Coupling of Aryl Chlorides: Improved Activity and Facile Catalyst Recovery. Green Chem. 2011;13:1352–1361. doi: 10.1039/c0gc00955e. DOI

Greene T.W., Wuts P.G.M. Protective Groups in Organic Synthesis. 3rd ed. Wiley; New York, NY, USA: 1999. p. 518. ISBN-100471160199.

Basel Y., Hassner A. Di-tert-butyl Dicarbonate and 4-(Dimethylamino)pyridine Revisited. Their Reactions with Amines and Alcohols. J. Org. Chem. 2000;65:6368–6380. doi: 10.1021/jo000257f. PubMed DOI

Houlihan F., Bouchard F., Frechet J.M., Willson C.G. Phase Transfer Catalysis in the tert-Butyloxycarbonylation of Alcohols, Phenols, Enols and Thiols with di-tert-Butyl Dicarbonate. Can. J. Chem. 1985;63:153–162. doi: 10.1139/v85-025. DOI

Hegarty A.F. In: Comprehensive Organic Chemistry. Sutherland I.O., editor. Volume 2. Pergamon; London, UK: 1979. p. 1067.

Tundo P., Rossi L., Loris A. Dimethyl Carbonate as an Ambident Electrophile. J. Org. Chem. 2005;70:2219–2224. doi: 10.1021/jo048532b. PubMed DOI

Veldurthy B., Figueras F. An Efficient Synthesis of Organic Carbonates: Atom Economic Protocol with a New Catalytic System. Chem. Commun. 2004;6:734–735. doi: 10.1039/b316050e. PubMed DOI

Bratt M.O., Taylor P.C. Synthesis of Carbonates and Related Compounds from Carbon Dioxide via Methane Sulfonyl Carbonates. J. Org. Chem. 2003;68:5439–5444. doi: 10.1021/jo026753g. PubMed DOI

Shaikh A.G., Sivaram S. Organic Carbonates. Chem. Rev. 1996;96:951–976. doi: 10.1021/cr950067i. PubMed DOI

Parrish J.P., Salvatore R.N., Jung K.W. Perspectives on Alkyl Carbonates in Organic Synthesis. Tetrahedron. 2000;56:8207–8237. doi: 10.1016/S0040-4020(00)00671-2. DOI

Zhu J. SNAr Based Macrocyclization via Biaryl Ether Formation: Application in Natural Product Synthesis. Synlett. 1997;2:133–144. doi: 10.1055/s-1997-722. DOI

Boger D.L., Patane M.A., Zhou J. Total Synthesis of Bouvardin, O-Methylbouvardin, and O-Methyl-N9-desmethylbouvardin. J. Am. Chem. Soc. 1994;116:8544–8556. doi: 10.1021/ja00098a015. DOI

Huffman L.M., Stahl S.S. Carbon-Nitrogen Bond Formation Involving Well-Defined Aryl-Copper (III) Complexes. J. Am. Chem. Soc. 2008;130:9196–9197. doi: 10.1021/ja802123p. PubMed DOI

Torraca K.E., Huang X., Parrish C.A., Buchwald S.L. An Efficient Intermolecular Palladium-Catalyzed Synthesis of Aryl Ethers. J. Am. Chem. Soc. 2001;123:10770–10771. doi: 10.1021/ja016863p. PubMed DOI

Desmarets C., Schneider R., Fort Y. Nickel(0)/Dihydroimidazol-2-ylidene Complex Catalyzed Coupling of Aryl Chlorides and Amines. J. Org. Chem. 2002;67:3029–3036. doi: 10.1021/jo016352l. PubMed DOI

Ganesh Babu S., Karvembu R. Room Temperature Ullmann Type C–O and C–S Cross Coupling of Aryl Halides with Phenol/Thiophenol Catalyzed by CuO Nanoparticles. Tetrahedron Lett. 2013;54:1677–1680. doi: 10.1016/j.tetlet.2013.01.063. DOI

Gawande M.B., Branco P.S. An Efficient and Expeditious Fmoc Protection of Amines and Amino Acids in Aqueous Media. Green Chem. 2011;13:3355–3359. doi: 10.1039/c1gc15868f. DOI

Gawande M.B., Shelke S.N., Zboril R., Varma R.S. Microwave-Assisted Chemistry: Synthetic Applications for Rapid Assembly of Nanomaterials and Organics. Acc. Chem. Res. 2014;47:1338–1348. doi: 10.1021/ar400309b. PubMed DOI

Shelke S.N., Bankar S.R., Mahske G.R., Kadam S.S., Murade D.K., Bhorkade S.B., Rathi A.K., Bundaleski N., Teodoro O.M.N.D., Zboril R., et al. Iron Oxide-Supported Copper Oxide Nanoparticles (Nanocat-Fe-CuO): Magnetically Recyclable Catalysts for the Synthesis of Pyrazole Derivatives, 4-Methoxyaniline and Ullmann-type Condensation Reactions. ACS Sustain. Chem. Eng. 2014;2:1699–1706. doi: 10.1021/sc500160f. DOI

Gawande M.B., Shelke S.N., Branco P.S., Rathi A., Pandey R.K. Mixed Metal MgO–ZrO2 Nanoparticle-Catalyzed O-tert-Boc Protection of Alcohols and Phenols under Solvent-Free Conditions. Appl. Organometal. Chem. 2012;26:395–400. doi: 10.1002/aoc.2846. DOI

Gawande M.B., Pandey R.K., Jayaram R.V. Role of Mixed Metal Oxides in Catalysis Science-Versatile Applications in Organic Synthesis. Catal. Sci. Technol. 2012;2:1113–1125. doi: 10.1039/c2cy00490a. DOI

Sonavane S.U., Gawande M.B., Deshpande S.S., Venkataraman A., Jayaram R.V. Chemoselective Transfer Hydrogenation Reactions Over Nanosized γ-Fe2O3 Catalyst Prepared by Novel Combustion Route. Catal. Commun. 2007;8:1803–1806. doi: 10.1016/j.catcom.2007.01.037. DOI

Gade V.B., Rathi A.K., Bhalekar S.B., Tucek J., Tomanec O., Varma R.S., Zboril R., Shelke S.N., Gawande M.B. Iron-Oxide-Supported UltrasmallZnO Nanoparticles: Applications for Transesterification, Amidation and O-Acylation Reactions. ACS Sustain. Chem. Eng. 2017;5:3314–3320. doi: 10.1021/acssuschemeng.6b03167. DOI

Gawande M.B., Rathi A., Nogueira I.D., Ghumman C.A.A., Bundaleski N., Teodoro O.M.N.D., Branco P.S. A Recyclable Ferrite-Co Magnetic Nanocatalyst for the Oxidation of Alcohols to Carbonyl Compounds. ChemPlusChem. 2012;77:865–871. doi: 10.1002/cplu.201200081. DOI

Gawande M.B., Branco P.S., Nogueira I.D., Ghumman C.A.A., Bundaleski N., Santos A., Teodoro O.M.N.D., Luque R. Catalytic Applications of a Versatile Magnetically Separable Fe-Mo (Nanocat-Fe-Mo) Nanocatalyst. Green Chem. 2013;15:682–689. doi: 10.1039/c3gc36844k. DOI

Gawande M.B., Rathi A.K., Nogueira I.D., Varma R.S., Branco P.S. Magnetite-Supported Sulfonic Acid: A Retrievable Nanocatalyst For the Ritter Reaction and Multicomponent Reactions. Green Chem. 2013;15:1895–1899. doi: 10.1039/c3gc40457a. DOI

Fang Z., Xu W., Huang T., Li M., Wang W., Liu Y., Mao C., Meng F., Wang M., Cheng M., et al. Facile scalable synthesis of Co3O4/carbon nanotube hybrids as superior anode materials for lithium-ion batteries. Mater. Res. Bull. 2013;48:4419–4423. doi: 10.1016/j.materresbull.2013.06.044. DOI

Chuang T.J., Brundle C.R., Rice D.W. Interpretation of the X-ray Photoemission Spectra of Cobalt Oxides and Cobalt Oxide Surfaces. Surf. Sci. 1976;59:413–429. doi: 10.1016/0039-6028(76)90026-1. DOI

Gautier J.L., Rios E., Gracia M., Marco J.F., Gancedo J.R. Characterization by X-ray Photoelectron Spectroscopy of Thin MnxCo3−xO4 (1 ≥ x ≥ 0) Spinel Films Prepared by Low-Temperature Spray Pyrolysis. Thin Solid Films. 1997;311:51–57. doi: 10.1016/S0040-6090(97)00463-X. DOI

Shen Z.X., Allen J.W., Lindberg P.A.P., Dessau D.S., Wells B.O., Borg A., Ellis W., Kang J.S., Oh S.J., Lindau I., et al. Photoemission Study of CoO. Phys. Rev. B. 1990;42:1817–1828. doi: 10.1103/PhysRevB.42.1817. PubMed DOI

Van Elp J., Wieland J.L., Eskes H., Kuiper P., Sawatzky G.A., de Groot F.M.F., Turner T.S. Electronic Structure of CoO, Li-Doped CoO, and LiCoO2. Phys. Rev. B. 1991;44:6090–6103. doi: 10.1103/PhysRevB.44.6090. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...