Iron Oxide-Cobalt Nanocatalyst for O-tert-Boc Protection and O-Arylation of Phenols
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
29673159
PubMed Central
PMC5923576
DOI
10.3390/nano8040246
PII: nano8040246
Knihovny.cz E-resources
- Keywords
- Fe3O4-Co3O4, O-arylation, O-tert-butoxycarbonylation, ethers, magnetic nanocatalysts, phenols,
- Publication type
- Journal Article MeSH
Efficient and general protocols for the O-tert-boc protection and O-arylation of phenols were developed in this paper using a recyclable magnetic Fe₃O₄-Co₃O₄ nanocatalyst (Nano-Fe-Co), which is easily accessible via simple wet impregnation techniques in aqueous mediums from inexpensive precursors. The results showed the catalysts were well characterized by XRD (X-ray Diffraction), ICP-AES (Inductive Coupled Plasma Atomic Emission Spectroscopy), TEM (Transmission Electron Microscopy), TOF-SIMS (Time-Of-Flight Secondary Ion Mass Spectrometry) and XPS (X-ray Photoelectron Spectroscopy). The O-tert-boc protection and O-arylation of phenols was accomplished in good to excellent yields (85–95%) and the catalyst was reusable and recyclable with no loss of catalytic activity for at least six repetitions.
See more in PubMed
Gawande M.B., Bonifacio V.D.B., Luque R., Branco P.S., Varma R.S. Benign by Design: Catalyst-Free In-Water, On-Water Green Chemical Methodologies in Organic Synthesis. Chem. Soc. Rev. 2013;42:5522–5551. doi: 10.1039/c3cs60025d. PubMed DOI
Gawande M.B., Bonifácio V.D.B., Luque R., Branco P.S., Varma R.S. Solvent-Free and Catalysts-Free Chemistry: A Benign Pathway to Sustainability. ChemSusChem. 2014;7:24–44. doi: 10.1002/cssc.201300485. PubMed DOI
Mojtahedi M.M., Niknejad N., Veisi H. A Mild and Green Method for the N-BOC Protection of Amines without Assistant of Catalyst Under Solvent-free Conditions. Lett. Org. Chem. 2013;10:121–125. doi: 10.2174/1570178611310020010. DOI
Anastas P.T., Bartlett L.B., Kirchhoff M.M., Williamson T.C. The Role of Catalysis in the Design, Development and Implementation of Green Chemistry. Catal. Today. 2000;55:11–22. doi: 10.1016/S0920-5861(99)00222-9. DOI
Corma A., Garcia H. Supported Gold Nanoparticles as Catalysts for Organic Reactions. Chem. Soc. Rev. 2008;37:2096–2126. doi: 10.1039/b707314n. PubMed DOI
Davis S.E., Ide M.S., Davis R.J. Selective Oxidation of Alcohols and Aldehydes over Supported Metal Nanoparticles. Green Chem. 2013;15:17–45. doi: 10.1039/C2GC36441G. DOI
Kunde S.P., Kanade K.G., Karale B.K., Akolkar H.N., Randhavane P.V., Shinde S.T. Synthesis and Characterization of Nanostructured Cu-ZnO: An Efficient Catalyst for the Preparation of (E)-3-Styrylchromones. Arab. J. Chem. 2017 doi: 10.1016/j.arabjc.2016.12.015. DOI
Daniel M.C., Astruc D. Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties and Applications toward Biology, Catalysis and Nanotechnology. Chem. Rev. 2004;104:293–346. doi: 10.1021/cr030698+. PubMed DOI
Kalidindi S.B., Jagirdar B.R. Nanocatalysis and Prospects of Green Chemistry. ChemSusChem. 2012;5:65–75. doi: 10.1002/cssc.201100377. PubMed DOI
Chen P., Zhou X., Shen H., Andoy N.M., Choudhary E., Han K.-S., Liu G., Meng W. Single-Molecule Fluorescence Imaging of Nanocatalytic Processes. Chem. Soc. Rev. 2010;39:4560–4570. doi: 10.1039/b909052p. PubMed DOI
Schatz A., Reiser O., Stark W.J. Nanoparticles as Semi-Heterogeneous Catalyst Supports. Chem. Eur. J. 2010;16:8950–8967. doi: 10.1002/chem.200903462. PubMed DOI
Schlogl R., Hamid S.B.A. Nanocatalysis: Mature Science Revisited or Something Really New? Angew. Chem. Int. Ed. 2004;43:1628–1637. doi: 10.1002/anie.200301684. PubMed DOI
Murzin D.Y. Nanokinetics for Nanocatalysis. Catal. Sci. Technol. 2011;1:380–384. doi: 10.1039/c0cy00084a. DOI
Baig R.B.N., Varma R.S. Magnetically Retrievable Catalysts for Organic Synthesis. Chem. Commun. 2013;49:752–770. doi: 10.1039/C2CC35663E. PubMed DOI
Gawande M.B., Branco P.S., Varma R.S. Nano-Magnetite (Fe3O4) as a Support for Recyclable Catalysts in the Development of Sustainable Methodologies. Chem. Soc. Rev. 2013;42:3371–3393. doi: 10.1039/c3cs35480f. PubMed DOI
Jansat S., Picurelli D., Pelzer K., Philippot K., Gómez M., Muller G., Lecante P., Chaudret B. Synthesis, Characterization and Catalytic Reactivity of Ruthenium Nanoparticles Stabilized by Chiral N-Donor Ligands. New J. Chem. 2006;30:115–122. doi: 10.1039/B509378C. DOI
Li J., Zhang Y., Han D., Gao Q., Li C. Asymmetric Transfer Hydrogenation Using Recoverable Ruthenium Catalyst Immobilized in to Magnetic Mesoporous Silica. J. Mol. Catal. A Chem. 2009;298:31–35. doi: 10.1016/j.molcata.2008.09.027. DOI
Jansat S., Gómez M., Philippot K., Muller G., Guiu E., Claver C., Castillón S., Chaudret B. A Case for Enantioselective Allylic Alkylation Catalyzed by Palladium Nanoparticles. J. Am. Chem. Soc. 2004;126:1592–1593. doi: 10.1021/ja036132k. PubMed DOI
Molvinger K., Lopez M., Court J. Enantioselective Borane Reduction of Ketones with Oxazaborolidines Boron-bound to Nickel Boride Nanoparticles. Tetrahedron Lett. 1999;40:8375–8378. doi: 10.1016/S0040-4039(99)01871-7. DOI
Wang B.G., Ma B.C., Wang Q., Wang W. Superparamagnetic Nanoparticle-Supported (S)-Diphenylprolinol Trimethylsilyl Ether as a Recyclable Catalyst for Asymmetric Michael Addition in Water. Adv. Synth. Catal. 2010;352:2923–2928. doi: 10.1002/adsc.201000508. DOI
Jin M.J., Lee D.H. A Practical Heterogeneous Catalyst for the Suzuki, Sonogashira and Stille Coupling Reactions of Unreactive Aryl Chlorides. Angew. Chem. Int. Ed. 2010;49:1119–1122. doi: 10.1002/anie.200905626. PubMed DOI
Gleeson O., Tekoriute R., Gunko Y.K., Connon S.J. The First Magnetic Nanoparticle-Supported Chiral DMAP Analogue: Highly Enantioselective Acylation and Excellent Recyclability. Chem. Eur. J. 2009;15:5669–5673. doi: 10.1002/chem.200900532. PubMed DOI
Yang H.Q., Wang Y., Qin Y., Chong Y., Yang Q., Li G., Zhang L., Li W. One-pot Preparation of Magnetic N-Heterocyclic Carbene-Functionalized Silica Nanoparticles for the Suzuki–Miyaura Coupling of Aryl Chlorides: Improved Activity and Facile Catalyst Recovery. Green Chem. 2011;13:1352–1361. doi: 10.1039/c0gc00955e. DOI
Greene T.W., Wuts P.G.M. Protective Groups in Organic Synthesis. 3rd ed. Wiley; New York, NY, USA: 1999. p. 518. ISBN-100471160199.
Basel Y., Hassner A. Di-tert-butyl Dicarbonate and 4-(Dimethylamino)pyridine Revisited. Their Reactions with Amines and Alcohols. J. Org. Chem. 2000;65:6368–6380. doi: 10.1021/jo000257f. PubMed DOI
Houlihan F., Bouchard F., Frechet J.M., Willson C.G. Phase Transfer Catalysis in the tert-Butyloxycarbonylation of Alcohols, Phenols, Enols and Thiols with di-tert-Butyl Dicarbonate. Can. J. Chem. 1985;63:153–162. doi: 10.1139/v85-025. DOI
Hegarty A.F. In: Comprehensive Organic Chemistry. Sutherland I.O., editor. Volume 2. Pergamon; London, UK: 1979. p. 1067.
Tundo P., Rossi L., Loris A. Dimethyl Carbonate as an Ambident Electrophile. J. Org. Chem. 2005;70:2219–2224. doi: 10.1021/jo048532b. PubMed DOI
Veldurthy B., Figueras F. An Efficient Synthesis of Organic Carbonates: Atom Economic Protocol with a New Catalytic System. Chem. Commun. 2004;6:734–735. doi: 10.1039/b316050e. PubMed DOI
Bratt M.O., Taylor P.C. Synthesis of Carbonates and Related Compounds from Carbon Dioxide via Methane Sulfonyl Carbonates. J. Org. Chem. 2003;68:5439–5444. doi: 10.1021/jo026753g. PubMed DOI
Shaikh A.G., Sivaram S. Organic Carbonates. Chem. Rev. 1996;96:951–976. doi: 10.1021/cr950067i. PubMed DOI
Parrish J.P., Salvatore R.N., Jung K.W. Perspectives on Alkyl Carbonates in Organic Synthesis. Tetrahedron. 2000;56:8207–8237. doi: 10.1016/S0040-4020(00)00671-2. DOI
Zhu J. SNAr Based Macrocyclization via Biaryl Ether Formation: Application in Natural Product Synthesis. Synlett. 1997;2:133–144. doi: 10.1055/s-1997-722. DOI
Boger D.L., Patane M.A., Zhou J. Total Synthesis of Bouvardin, O-Methylbouvardin, and O-Methyl-N9-desmethylbouvardin. J. Am. Chem. Soc. 1994;116:8544–8556. doi: 10.1021/ja00098a015. DOI
Huffman L.M., Stahl S.S. Carbon-Nitrogen Bond Formation Involving Well-Defined Aryl-Copper (III) Complexes. J. Am. Chem. Soc. 2008;130:9196–9197. doi: 10.1021/ja802123p. PubMed DOI
Torraca K.E., Huang X., Parrish C.A., Buchwald S.L. An Efficient Intermolecular Palladium-Catalyzed Synthesis of Aryl Ethers. J. Am. Chem. Soc. 2001;123:10770–10771. doi: 10.1021/ja016863p. PubMed DOI
Desmarets C., Schneider R., Fort Y. Nickel(0)/Dihydroimidazol-2-ylidene Complex Catalyzed Coupling of Aryl Chlorides and Amines. J. Org. Chem. 2002;67:3029–3036. doi: 10.1021/jo016352l. PubMed DOI
Ganesh Babu S., Karvembu R. Room Temperature Ullmann Type C–O and C–S Cross Coupling of Aryl Halides with Phenol/Thiophenol Catalyzed by CuO Nanoparticles. Tetrahedron Lett. 2013;54:1677–1680. doi: 10.1016/j.tetlet.2013.01.063. DOI
Gawande M.B., Branco P.S. An Efficient and Expeditious Fmoc Protection of Amines and Amino Acids in Aqueous Media. Green Chem. 2011;13:3355–3359. doi: 10.1039/c1gc15868f. DOI
Gawande M.B., Shelke S.N., Zboril R., Varma R.S. Microwave-Assisted Chemistry: Synthetic Applications for Rapid Assembly of Nanomaterials and Organics. Acc. Chem. Res. 2014;47:1338–1348. doi: 10.1021/ar400309b. PubMed DOI
Shelke S.N., Bankar S.R., Mahske G.R., Kadam S.S., Murade D.K., Bhorkade S.B., Rathi A.K., Bundaleski N., Teodoro O.M.N.D., Zboril R., et al. Iron Oxide-Supported Copper Oxide Nanoparticles (Nanocat-Fe-CuO): Magnetically Recyclable Catalysts for the Synthesis of Pyrazole Derivatives, 4-Methoxyaniline and Ullmann-type Condensation Reactions. ACS Sustain. Chem. Eng. 2014;2:1699–1706. doi: 10.1021/sc500160f. DOI
Gawande M.B., Shelke S.N., Branco P.S., Rathi A., Pandey R.K. Mixed Metal MgO–ZrO2 Nanoparticle-Catalyzed O-tert-Boc Protection of Alcohols and Phenols under Solvent-Free Conditions. Appl. Organometal. Chem. 2012;26:395–400. doi: 10.1002/aoc.2846. DOI
Gawande M.B., Pandey R.K., Jayaram R.V. Role of Mixed Metal Oxides in Catalysis Science-Versatile Applications in Organic Synthesis. Catal. Sci. Technol. 2012;2:1113–1125. doi: 10.1039/c2cy00490a. DOI
Sonavane S.U., Gawande M.B., Deshpande S.S., Venkataraman A., Jayaram R.V. Chemoselective Transfer Hydrogenation Reactions Over Nanosized γ-Fe2O3 Catalyst Prepared by Novel Combustion Route. Catal. Commun. 2007;8:1803–1806. doi: 10.1016/j.catcom.2007.01.037. DOI
Gade V.B., Rathi A.K., Bhalekar S.B., Tucek J., Tomanec O., Varma R.S., Zboril R., Shelke S.N., Gawande M.B. Iron-Oxide-Supported UltrasmallZnO Nanoparticles: Applications for Transesterification, Amidation and O-Acylation Reactions. ACS Sustain. Chem. Eng. 2017;5:3314–3320. doi: 10.1021/acssuschemeng.6b03167. DOI
Gawande M.B., Rathi A., Nogueira I.D., Ghumman C.A.A., Bundaleski N., Teodoro O.M.N.D., Branco P.S. A Recyclable Ferrite-Co Magnetic Nanocatalyst for the Oxidation of Alcohols to Carbonyl Compounds. ChemPlusChem. 2012;77:865–871. doi: 10.1002/cplu.201200081. DOI
Gawande M.B., Branco P.S., Nogueira I.D., Ghumman C.A.A., Bundaleski N., Santos A., Teodoro O.M.N.D., Luque R. Catalytic Applications of a Versatile Magnetically Separable Fe-Mo (Nanocat-Fe-Mo) Nanocatalyst. Green Chem. 2013;15:682–689. doi: 10.1039/c3gc36844k. DOI
Gawande M.B., Rathi A.K., Nogueira I.D., Varma R.S., Branco P.S. Magnetite-Supported Sulfonic Acid: A Retrievable Nanocatalyst For the Ritter Reaction and Multicomponent Reactions. Green Chem. 2013;15:1895–1899. doi: 10.1039/c3gc40457a. DOI
Fang Z., Xu W., Huang T., Li M., Wang W., Liu Y., Mao C., Meng F., Wang M., Cheng M., et al. Facile scalable synthesis of Co3O4/carbon nanotube hybrids as superior anode materials for lithium-ion batteries. Mater. Res. Bull. 2013;48:4419–4423. doi: 10.1016/j.materresbull.2013.06.044. DOI
Chuang T.J., Brundle C.R., Rice D.W. Interpretation of the X-ray Photoemission Spectra of Cobalt Oxides and Cobalt Oxide Surfaces. Surf. Sci. 1976;59:413–429. doi: 10.1016/0039-6028(76)90026-1. DOI
Gautier J.L., Rios E., Gracia M., Marco J.F., Gancedo J.R. Characterization by X-ray Photoelectron Spectroscopy of Thin MnxCo3−xO4 (1 ≥ x ≥ 0) Spinel Films Prepared by Low-Temperature Spray Pyrolysis. Thin Solid Films. 1997;311:51–57. doi: 10.1016/S0040-6090(97)00463-X. DOI
Shen Z.X., Allen J.W., Lindberg P.A.P., Dessau D.S., Wells B.O., Borg A., Ellis W., Kang J.S., Oh S.J., Lindau I., et al. Photoemission Study of CoO. Phys. Rev. B. 1990;42:1817–1828. doi: 10.1103/PhysRevB.42.1817. PubMed DOI
Van Elp J., Wieland J.L., Eskes H., Kuiper P., Sawatzky G.A., de Groot F.M.F., Turner T.S. Electronic Structure of CoO, Li-Doped CoO, and LiCoO2. Phys. Rev. B. 1991;44:6090–6103. doi: 10.1103/PhysRevB.44.6090. PubMed DOI