Silk Route to the Acceptance and Re-Implementation of Bacteriophage Therapy-Part II
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
29690620
PubMed Central
PMC6023077
DOI
10.3390/antibiotics7020035
PII: antibiotics7020035
Knihovny.cz E-zdroje
- Klíčová slova
- CRISPR CAS, Nagoya Protocol, antibiotic resistance, bacteriophage therapy, bacteriophages,
- Publikační typ
- časopisecké články MeSH
This perspective paper follows up on earlier communications on bacteriophage therapy that we wrote as a multidisciplinary and intercontinental expert-panel when we first met at a bacteriophage conference hosted by the Eliava Institute in Tbilisi, Georgia in 2015. In the context of a society that is confronted with an ever-increasing number of antibiotic-resistant bacteria, we build on the previously made recommendations and specifically address how the Nagoya Protocol might impact the further development of bacteriophage therapy. By reviewing a number of recently conducted case studies with bacteriophages involving patients with bacterial infections that could no longer be successfully treated by regular antibiotic therapy, we again stress the urgency and significance of the development of international guidelines and frameworks that might facilitate the legal and effective application of bacteriophage therapy by physicians and the receiving patients. Additionally, we list and comment on several recently started and ongoing clinical studies, including highly desired double-blind placebo-controlled randomized clinical trials. We conclude with an outlook on how recently developed DNA editing technologies are expected to further control and enhance the efficient application of bacteriophages.
Department of Biological Sciences Cork Institute of Technology Bishopstown Cork T12 P928 UK
Department of Experimental Biology Faculty of Science Masaryk University Brno 611 37 Czech Republic
Department of Fundamental Microbiology University of Lausanne CH 1015 Lausanne Switzerland
Eliava Institute of Bacteriophage Microbiology and Virology Tbilisi 0160 Georgia
Nestlé Research Center Nestec Ltd Vers chez les Blanc CH 1000 Lausanne Switzerland
School of Medicine and Dentistry University of Aberdeen Aberdeen AB25 2ZD UK
Zobrazit více v PubMed
Aminov R. History of antimicrobial drug discovery: Major classes and health impact. Biochem. Pharmacol. 2017;133:4–19. doi: 10.1016/j.bcp.2016.10.001. PubMed DOI
Aminov R.I. A brief history of the antibiotic era: Lessons learned and challenges for the future. Front. Microbiol. 2010;1:134. doi: 10.3389/fmicb.2010.00134. PubMed DOI PMC
Centers for Disease Control and Prevention . Antibiotic Resistance Threats in the United States, 2013. Centers for Disease Control and Prevention; Atlanta, GA, USA: 2013.
European Centre for Disease Prevention and Control. European Food Safety Authority. European Medicines Agency Ecdc/efsa/ema second joint report on the integrated analysis of the consumption of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from humans and food-producing animals. EFSA J. 2017;15:e04872. doi: 10.2903/j.efsa.2017.4872. PubMed DOI PMC
Organization W.H. Global Action Plan on Antimicrobial Resistance. WHO; Geneva, Switzerland: 2015.
O’Neill J. Tackling Drug–Resistant Infections Globally: Final Report and Recommendations. [(accessed on 18 April 2018)]; Available online: http://www.iica.int/en/press/news/tackling-drug-resistant-infections-globally-final-report-and-recommendations.
Expert round-table on acceptance and re–implementation of bacteriophage therapy Silk route to the acceptance and re-implementation of bacteriophage therapy. Biotechnol. J. 2016;11:595–600. PubMed
Servick K. Beleaguered phage therapy trial presses on. Science. 2016;352:1506. doi: 10.1126/science.352.6293.1506. PubMed DOI
PhagoBurn Evaluation of Phage Therapy for the Treatment of Escherichia coli and Pseudomonas aeruginosa Burn Wound Infections. [(accessed on 18 April 2018)]; Available online: http://www.phagoburn.eu/
Sarker S.A., Sultana S., Reuteler G., Moine D., Descombes P., Charton F., Bourdin G., McCallin S., Ngom-Bru C., Neville T. Oral phage therapy of acute bacterial diarrhea with two coliphage preparations: A randomized trial in children from bangladesh. EBioMedicine. 2016;4:124–137. doi: 10.1016/j.ebiom.2015.12.023. PubMed DOI PMC
Międzybrodzki R., Borysowski J., Weber-Dąbrowska B., Fortuna W., Letkiewicz S., Szufnarowski K., Pawełczyk Z., Rogóż P., Kłak M., Wojtasik E. Chapter 3–Clinical aspects of phage therapy. In: Łobocka M., Szybalski W., editors. Advances in Virus Research. Volume 83. Academic Press; Cambridge, MA, USA: 2012. pp. 73–121. PubMed
Abedon S.T., García P., Mullany P., Aminov R. Editorial: Phage therapy: past, present and future. Front. Microbiol. 2017;8:981. doi: 10.3389/fmicb.2017.00981. PubMed DOI PMC
McCallin S., Alam Sarker S., Barretto C., Sultana S., Berger B., Huq S., Krause L., Bibiloni R., Schmitt B., Reuteler G. Safety analysis of a russian phage cocktail: From metagenomic analysis to oral application in healthy human subjects. Virology. 2013;443:187–196. doi: 10.1016/j.virol.2013.05.022. PubMed DOI
Leitner L., Sybesma W., Chanishvili N., Goderdzishvili M., Chkhotua A., Ujmajuridze A., Schneider M.P., Sartori A., Mehnert U., Bachmann L.M. Bacteriophages for treating urinary tract infections in patients undergoing transurethral resection of the prostate: A randomized, placebo-controlled, double-blind clinical trial. BMC Urol. 2017;17:90. doi: 10.1186/s12894-017-0283-6. PubMed DOI PMC
Ujmajuridze A., Chanishvili N., Goderdzishvili M., Leitner L., Mehnert U., Chkhotua A., Kessler T., Sybesma W. Adapted bacteriophages for treating urinary tract infections. 2018 Submitted for publication. PubMed PMC
Górski A., Międzybrodzki R., Weber-Dąbrowska B., Fortuna W., Letkiewicz S., Rogóż P., Jończyk-Matysiak E., Dąbrowska K., Majewska J., Borysowski J. Phage therapy: Combating infections with potential for evolving from merely a treatment for complications to targeting diseases. Front. Microbiol. 2016;7:1515. doi: 10.3389/fmicb.2016.01515. PubMed DOI PMC
Saussereau E., Vachier I., Chiron R., Godbert B., Sermet I., Dufour N., Pirnay J.P., De Vos D., Carrié F., Molinari N. Effectiveness of bacteriophages in the sputum of cystic fibrosis patients. Clin. Microbiol. Infect. 2014;20:O983–O990. doi: 10.1111/1469-0691.12712. PubMed DOI
Bernstein L.J., Ochs H.D., Wedgwood R.J., Rubinstein A. Defective humoral immunity in pediatric acquired immune deficiency syndrome. J. Pediatr. 1985;107:352–357. doi: 10.1016/S0022-3476(85)80505-9. PubMed DOI
Rhoads D.D., Wolcott R.D., Kuskowski M.A., Wolcott B.M., Ward L.S., Sulakvelidze A. Bacteriophage therapy of venous leg ulcers in humans: Results of a phase i safety trial. J. Wound Care. 2009;18:237–243. doi: 10.12968/jowc.2009.18.6.42801. PubMed DOI
Duplessis C., Biswas B., Hanisch B., Perkins M., Henry M., Quinones J., Wolfe D., Estrella L., Hamilton T. Refractory pseudomonas bacteremia in a 2-year-old sterilized by bacteriophage therapy. J. Pediatr. Infect. Dis. Soc. 2017 doi: 10.1093/jpids/pix056. PubMed DOI
Schooley R.T., Biswas B., Gill J.J., Hernandez-Morales A., Lancaster J., Lessor L., Barr J.J., Reed S.L., Rohwer F., Benler S. Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant acinetobacter baumannii infection. Antimicrob. Agents Chemother. 2017;61:e00954-17. doi: 10.1128/AAC.00954-17. PubMed DOI PMC
Zhvania P., Hoyle N.S., Nadareishvili L., Nizharadze D., Kutateladze M. Phage therapy in a 16-year-old boy with netherton syndrome. Front. Med. 2017;4:94. doi: 10.3389/fmed.2017.00094. PubMed DOI PMC
Jennes S., Merabishvili M., Soentjens P., Pang K.W., Rose T., Keersebilck E., Soete O., François P.-M., Teodorescu S., Verween G. Use of bacteriophages in the treatment of colistin-only-sensitive pseudomonas aeruginosa septicaemia in a patient with acute kidney injury—A case report. Crit. Care. 2017;21:129. doi: 10.1186/s13054-017-1709-y. PubMed DOI PMC
Fish R., Kutter E., Wheat G., Blasdel B., Kutateladze M., Kuhl S. Bacteriophage treatment of intransigent diabetic toe ulcers: A case series. J. Wound Care. 2016;25:S27–S33. doi: 10.12968/jowc.2016.25.Sup7.S27. PubMed DOI
Soothill J. Use of bacteriophages in the treatment of pseudomonas aeruginosa infections. Expert Rev. Anti-Infect. Ther. 2013;11:909–915. doi: 10.1586/14787210.2013.826990. PubMed DOI
Khawaldeh A., Morales S., Dillon B., Alavidze Z., Ginn A.N., Thomas L., Chapman S.J., Dublanchet A., Smithyman A., Iredell J.R. Bacteriophage therapy for refractory pseudomonas aeruginosa urinary tract infection. J. Med. Microbiol. 2011;60:1697–1700. doi: 10.1099/jmm.0.029744-0. PubMed DOI
Letkiewicz S., Międzybrodzki R., Fortuna W., Weber-Dąbrowska B., Górski A. Eradication of enterococcus faecalis by phage therapy in chronic bacterial prostatitis—Case report. Folia Microbiol. 2009;54:457–461. doi: 10.1007/s12223-009-0064-z. PubMed DOI
Fadlallah A., Chelala E., Legeais J.-M. Corneal infection therapy with topical bacteriophage administration. Open Ophthalmol. J. 2015;9:167–168. doi: 10.2174/1874364101509010167. PubMed DOI PMC
Jikia D., Chkhaidze N., Imedashvili E., Mgaloblishvili I., Tsitlanadze G., Katsarava R., Glenn Morris J., Sulakvelidze A. The use of a novel biodegradable preparation capable of the sustained release of bacteriophages and ciprofloxacin, in the complex treatment of multidrug-resistant staphylococcus aureus-infected local radiation injuries caused by exposure to sr90. Clin. Exp. Dermatol. 2005;30:23–26. doi: 10.1111/j.1365-2230.2004.01600.x. PubMed DOI
Leszczyński P., Weber-Dabrowska B., Kohutnicka M., Łuczak M., Górecki A., Górski A. Successful eradication of methicillin-resistantstaphylococcus aureus (MRSA) intestinal carrier status in a healthcare worker—Case report. Folia Microbiol. 2006;51:236–238. doi: 10.1007/BF02932128. PubMed DOI
Fevre C., Ferry T., Petitjean C., Leboucher C., L’hostis G., Laurent F., Regulski K. Phages-sur-Yvette. Gif-sur-Yvette; Essonne, France: 2017. Phage therapy: Compassionate use in france in 2017.
Verbeken G., Pirnay J.P., De Vos D., Jennes S., Zizi M., Lavigne R., Casteels M., Huys I. Optimizing the european regulatory framework for sustainable bacteriophage therapy in human medicine. Arch. Immunol. Ther. Exp. 2012;60:161–172. doi: 10.1007/s00005-012-0175-0. PubMed DOI
Pirnay J.-P., Verbeken G., Ceyssens P.-J., Huys I., De Vos D., Ameloot C., Fauconnier A. The magistral phage. Viruses. 2018;10:64. doi: 10.3390/v10020064. PubMed DOI PMC
Young R., Gill J.J. Microbiology. Phage therapy redux–What is to be done? Science. 2015;350:1163–1164. doi: 10.1126/science.aad6791. PubMed DOI PMC
Debarbieux L., Pirnay J.-P., Verbeken G., De Vos D., Merabishvili M., Huys I., Patey O., Schoonjans D., Vaneechoutte M., Zizi M. A bacteriophage journey at the european medicines agency. FEMS Microbiol. Lett. 2015;363 doi: 10.1093/femsle/fnv225. PubMed DOI PMC
Nagel T.E., Chan B.K., De Vos D., El-Shibiny A., Kang’ethe E.K., Makumi A., Pirnay J.-P. The developing world urgently needs phages to combat pathogenic bacteria. Front. Microbiol. 2016;7:882. doi: 10.3389/fmicb.2016.00882. PubMed DOI PMC
Van Zimmeren E., Vanneste S., Matthijs G., Vanhaverbeke W., Van Overwalle G. Patent pools and clearinghouses in the life sciences. Trends Biotechnol. 2011;29:569–576. doi: 10.1016/j.tibtech.2011.06.002. PubMed DOI PMC
Inoue M., Minghui R. Antimicrobial resistance: Translating political commitment into national action. Bull. World Health Organ. 2017;95 doi: 10.2471/blt.17.191890. PubMed DOI PMC
Johansen E. Future access and improvement of industrial lactic acid bacteria cultures. Microb. Cell Fact. 2017;16:230. doi: 10.1186/s12934-017-0851-1. PubMed DOI PMC
Overmann J., Scholz A.H. Microbiological research under the nagoya protocol: Facts and fiction. Trends Microbiol. 2017;25:85–88. doi: 10.1016/j.tim.2016.11.001. PubMed DOI
Smith D., da Silva M., Jackson J., Lyal C. Explanation of the nagoya protocol on access and benefit sharing and its implication for microbiology. Microbiology. 2017;163:289–296. doi: 10.1099/mic.0.000425. PubMed DOI
McCluskey K., Barker K.B., Barton H.A., Boundy-Mills K., Brown D.R., Coddington J.A., Cook K., Desmeth P., Geiser D., Glaeser J.A. The U.S. Culture collection network responding to the requirements of the nagoya protocol on access and benefit sharing. mBio. 2017;8 doi: 10.1128/mBio.00982-17. PubMed DOI PMC
Kiro R., Shitrit D., Qimron U. Efficient engineering of a bacteriophage genome using the type i-e crispr-cas system. RNA Biol. 2014;11:42–44. doi: 10.4161/rna.27766. PubMed DOI PMC
Bari S.M.N., Walker F.C., Cater K., Aslan B., Hatoum-Aslan A. Strategies for editing virulent staphylococcal phages using crispr-cas10. ACS Synth. Biol. 2017;6:2316–2325. doi: 10.1021/acssynbio.7b00240. PubMed DOI PMC
Pouillot F., Blois H., Iris F. Genetically engineered virulent phage banks in the detection and control of emergent pathogenic bacteria. Biosecur. Bioterror. 2010;8:155–169. doi: 10.1089/bsp.2009.0057. PubMed DOI PMC
Oślizło A., Miernikiewicz P., Piotrowicz A., Owczarek B., Kopciuch A., Figura G., Dąbrowska K. Purification of phage display-modified bacteriophage T4 by affinity chromatography. BMC Biotechnol. 2011;11:59. doi: 10.1186/1472-6750-11-59. PubMed DOI PMC
Vitiello C.L., Merril C.R., Adhya S. An amino acid substitution in a capsid protein enhances phage survival in mouse circulatory system more than a 1000-fold. Virus Res. 2005;114:101–103. doi: 10.1016/j.virusres.2005.05.014. PubMed DOI
Fagen J.R., Collias D., Singh A.K., Beisel C.L. Advancing the design and delivery of crispr antimicrobials. Curr. Opin. Biomed. Eng. 2017;4:57–64. doi: 10.1016/j.cobme.2017.10.001. DOI
Cross A. Endotoxin: Back to the future. Crit. Care Med. 2016;44:450–451. doi: 10.1097/CCM.0000000000001440. PubMed DOI PMC
Martel B., Moineau S. Crispr-cas: An efficient tool for genome engineering of virulent bacteriophages. Nucleic Acids Res. 2014;42:9504–9513. doi: 10.1093/nar/gku628. PubMed DOI PMC
Box A.M., McGuffie M.J., O’Hara B.J., Seed K.D. Functional analysis of bacteriophage immunity through a type i-e crispr-cas system in vibrio cholerae and its application in bacteriophage genome engineering. J. Bacteriol. 2016;198:578–590. doi: 10.1128/JB.00747-15. PubMed DOI PMC
Lemay M.-L., Tremblay D.M., Moineau S. Genome engineering of virulent lactococcal phages using crispr-cas9. ACS Synth. Biol. 2017;6:1351–1358. doi: 10.1021/acssynbio.6b00388. PubMed DOI
Tao P., Wu X., Tang W.-C., Zhu J., Rao V. Engineering of bacteriophage t4 genome using crispr-cas9. ACS Synth. Biol. 2017;6:1952–1961. doi: 10.1021/acssynbio.7b00179. PubMed DOI PMC
Luo M.L., Leenay R.T., Beisel C.L. Current and future prospects for crispr-based tools in bacteria. Biotechnol. Bioeng. 2016;113:930–943. doi: 10.1002/bit.25851. PubMed DOI PMC
Bardy P., Pantucek R., Benesik M., Doskar J. Genetically modified bacteriophages in applied microbiology. J. Appl. Microbiol. 2016;121:618–633. doi: 10.1111/jam.13207. PubMed DOI
Golan T., Milella M., Ackerstein A., Berger R. The changing face of clinical trials in the personalized medicine and immuno-oncology era: Report from The International Congress on Clinical Trials in Oncology & Hemato–Oncology (Icto 2017) J. Exp. Clin. Cancer Res. 2017;36:192. PubMed PMC