• This record comes from PubMed

Mequindox-Induced Kidney Toxicity Is Associated With Oxidative Stress and Apoptosis in the Mouse

. 2018 ; 9 () : 436. [epub] 20180501

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection

Document type Journal Article

Mequindox (MEQ), belonging to quinoxaline-di-N-oxides (QdNOs), is a synthetic antimicrobial agent widely used in China. Previous studies found that the kidney was one of the main toxic target organs of the QdNOs. However, the mechanisms underlying the kidney toxicity caused by QdNOs in vivo still remains unclear. The present study aimed to explore the molecular mechanism of kidney toxicity in mice after chronic exposure to MEQ. MEQ led to the oxidative stress, apoptosis, and mitochondrial damage in the kidney of mice. Meanwhile, MEQ upregulated Bax/Bcl-2 ratio, disrupted mitochondrial permeability transition pores, caused cytochrome c release, and a cascade activation of caspase, eventually induced apoptosis. The oxidative stress mediated by MEQ might led to mitochondria damage and apoptosis in a mitochondrial-dependent apoptotic pathway. Furthermore, upregulation of the Nrf2-Keap1 signaling pathway was also observed. Our findings revealed that the oxidative stress, mitochondrial dysfunction, and the Nrf2-Keap1 signaling pathway were associated with the kidney apoptosis induced by MEQ in vivo.

See more in PubMed

Alabsi A. M., Lim K. L., Paterson I. C., Ali-Saeed R., Muharram B. A. (2016). Cell cycle arrest and apoptosis induction via modulation of mitochondrial integrity by Bcl-2 family members and caspase dependence in Dracaena cinnabari-treated H400 human oral squamous cell carcinoma. Biomed. Res. Int. 2016:4904016. 10.1155/2016/4904016 PubMed DOI PMC

Azqueta A., Arbillaga L., Pachon G., Cascante M., Creppy E. E., Lopez de Cerain A. (2007). A quinoxaline 1,4-di-N-oxide derivative induces DNA oxidative damage not attenuated by vitamin C and E treatment. Chem Biol. Interact. 168 95–105. 10.1016/j.cbi.2007.02.013 PubMed DOI

Calabrese V., Cornelius C., Dinkova-Kostova A. T., Calabrese E. J., Mattson M. P. (2010). Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid. Redox Signal. 13 1763–1811. 10.1089/ars.2009.3074 PubMed DOI PMC

Cheng G., Li B., Wang C., Zhang H., Liang G., Weng Z., et al. (2015). Systematic and molecular basis of the antibacterial action of quinoxaline 1,4-Di-N-oxides against Escherichia coli. PLoS One 10:e0136450. 10.1371/journal.pone.0136450 PubMed DOI PMC

Chowdhury G., Kotandeniya D., Daniels J. S., Barnes C. L., Gates K. S. (2004). Enzyme-activated, hypoxia-selective DNA damage by 3-amino-2-quinoxalinecarbonitrile 1,4-di-N-oxide. Chem. Res. Toxicol. 17 1399–1405. 10.1021/tx049836w PubMed DOI

Dai C. S., Tang S. S., Deng S. J., Zhang S., Zhou Y., Velkov T., et al. (2015). Lycopene attenuates colistin-induced nephrotoxicity in mice via activation of the Nrf2/HO-1 pathway. Antimicrob. Agents Chemother. 59 579–585. 10.1128/AAC.03925-14 PubMed DOI PMC

Ding H., Liu Y., Zeng Z., Si H., Liu K., Liu Y., et al. (2012). Pharmacokinetics of mequindox and one of its major metabolites in chickens after intravenous, intramuscular and oral administration. Res. Vet. Sci. 93 374–377. 10.1016/j.rvsc.2011.07.007 PubMed DOI

GB15193.17 (2003). Chronic Toxicity and Carcinogenicity Study. Haidian District: National Institute of Standards of the People’s Republic of China; 109–113.

Huang L., Yin F., Pan Y., Chen D., Li J., Wan D., et al. (2015). Metabolism, distribution, and elimination of mequindox in pigs, chickens, and rats. J. Agric. Food Chem. 63 9839–9849. 10.1021/acs.jafc.5b02780 PubMed DOI

Huang X. J., Ihsan A., Wang X., Dai M. H., Wang Y. L., Su S. J., et al. (2009). Long-term dose-dependent response of Mequindox on aldosterone, corticosterone and five steroidogenic enzyme mRNAs in the adrenal of male rats. Toxicol. Lett. 191 167–173. 10.1016/j.toxlet.2009.08.021 PubMed DOI

Huang X. J., Wang X., Ihsan A., Liu Q., Xue X. J., Su S. J., et al. (2010a). Interactions of NADPH oxidase, renin-angiotensin-aldosterone system and reactive oxygen species in mequindox-mediated aldosterone secretion in Wistar rats. Toxicol. Lett. 198 112–118. 10.1016/j.toxlet.2010.05.013 PubMed DOI

Huang X. J., Zhang H. H., Wang X., Huang L. L., Zhang L. Y., Yan C. X., et al. (2010b). ROS mediated cytotoxicity of porcine adrenocortical cells induced by QdNOs derivatives in vitro. Chem. Biol. Interact. 185 227–234. 10.1016/j.cbi.2010.02.030 PubMed DOI

Ihsan A. (2011). Preclinical Toxicology of Mequindox. Ph.D. thesis, Huazhong Agricultural University; Wuhan.

Ihsan A., Wang X., Huang X. J., Liu Y., Liu Q., Zhou W., et al. (2010). Acute and subchronic toxicological evaluation of Mequindox in Wistar rats. Regul. Toxicol. Phar. 57 307–314. 10.1016/j.yrtph.2010.03.011 PubMed DOI

Ihsan A., Wang X., Liu Z., Wang Y., Huang X., Liu Y., et al. (2011). Long-term mequindox treatment induced endocrine and reproductive toxicity via oxidative stress in male Wistar rats. Toxicol. Appl. Pharm. 252 281–288. 10.1016/j.taap.2011.02.020 PubMed DOI

Ihsan A., Wang X., Tu H.-G., Zhang W., Dai M.-H., Peng D.-P., et al. (2013a). Genotoxicity evaluation of Mequindox in different short-term tests. Food Chem. Toxicol. 51 330–336. 10.1016/j.fct.2012.10.003 PubMed DOI

Ihsan A., Wang X., Zhang W., Tu H., Wang Y., Huang L., et al. (2013b). Genotoxicity of quinocetone, cyadox and olaquindox in vitro and in vivo. Food Chem. Toxicol. 59 207–214. 10.1016/j.fct.2013.06.008 PubMed DOI

Kimura M., Yamamoto T., Zhang J., Itoh K., Kyo M., Kamiya T., et al. (2007). Molecular basis distinguishing the DNA binding profile of Nrf2-Maf heterodimer from that of Maf homodimer. J. Biol. Chem. 282 33681–33690. 10.1074/jbc.M706863200 PubMed DOI

Kobayashi M., Yamamoto M. (2005). Molecular mechanisms activating the Nrf2-Keap1 pathway of antioxidant gene regulation. Antioxid. Redox Signal. 7 385–394. 10.1089/ars.2005.7.385 PubMed DOI

Li W., Kong A. N. (2009). Molecular mechanisms of Nrf2-mediated antioxidant response. Mol. Carcinog. 48 91–104. 10.1002/mc.20465 PubMed DOI PMC

Li Z., Wang J. (2006). A forskolin derivative, FSK88, induces apoptosis in human gastric cancer BGC823 cells through caspase activation involving regulation of Bcl-2 family gene expression, dissipation of mitochondrial membrane potential and cytochrome c release. Cell Biol. Int. 30 940–946. 10.1016/j.cellbi.2006.06.015 PubMed DOI

Li Z., Yu C., Chen X., Zhang B., Cao P., Li B., et al. (2015). Research on olaquindox induced endoplasmic reticulum stress related apoptosis on nephrotoxicity. J. Hygiene Res. 44 444–450. PubMed

Liu J., Ouyang M., Jiang J., Mu P., Wu J., Yang Q., et al. (2012). Mequindox induced cellular DNA damage via generation of reactive oxygen species. Mutat. Res. 741 70–75. 10.1016/j.mrgentox.2011.10.012 PubMed DOI

Liu Q., Lei Z., Dai M., Wang X., Yuan Z. (2017a). Toxic metabolites, Sertoli cells and Y chromosome related genes are potentially linked to the reproductive toxicity induced by mequindox. Oncotarget 8 87512–87528. 10.18632/oncotarget.20916 PubMed DOI PMC

Liu Q., Lei Z., Huang A., Lu Q., Wang X., Ahmed S., et al. (2017b). Mechanisms of the testis toxicity induced by chronic exposure to mequindox. Front. Pharmacol. 8:679. 10.3389/fphar.2017.00679 PubMed DOI PMC

Liu Q., Lei Z., Huang A., Wu Q., Xie S., Awais I., et al. (2017). Toxic metabolites, MAPK and Nrf2/Keap1 signaling pathways involved in oxidative toxicity in mice liver after chronic exposure to Mequindox. Sci. Rep. 7:41854. 10.1038/srep41854 PubMed DOI PMC

Liu Q., Zhang J., Luo X., Ihsan A., Liu X., Dai M., et al. (2016). Further investigations into the genotoxicity of quinoxaline-di-N-oxides and their primary metabolites. Food Chem. Toxicol. 93 145–157. 10.1016/j.fct.2016.04.029 PubMed DOI

Liu Z. Y., Huang L. L., Chen D. M., Yuan Z. H. (2010). Metabolism of mequindox in liver microsomes of rats, chicken and pigs. Rapid Commun. Mass Spectrom. 24 909–918. 10.1002/rcm.4460 PubMed DOI

Lohr J. W., Willsky G. R., Acara M. A. (1998). Renal drug metabolism. Pharmacol. Rev. 50 107–141. PubMed

NRC (2004). The Development of Science based Guidelines for Laboratory Animal Care, Proceedings of the November 2003 International Workshop. Washington, DC: National Academy Press. PubMed

OECD (2009). Guideline for the Testing of Chemicals. Guideline 453: Combined Chronic Toxicity∖Carcinogenicity Studies. OECD: Paris; 10.1787/9789264076457-en DOI

Pedruzzi L. M., Stockler-Pinto M. B., Leite M., Jr., Mafra D. (2012). Nrf2-keap1 system versus NF-kappaB: the good and the evil in chronic kidney disease? Biochimie 94 2461–2466. 10.1016/j.biochi.2012.07.015 PubMed DOI

Skipper A., Sims J. N., Yedjou C. G., Tchounwou P. B. (2016). Cadmium chloride induces DNA damage and apoptosis of human liver carcinoma cells via oxidative stress. Int. J. Environ. Res. Public Health 13 88–93. 10.3390/ijerph13010088 PubMed DOI PMC

Vicente E., Perez-Silanes S., Lima L. M., Ancizu S., Burguete A., Solano B., et al. (2009). Selective activity against Mycobacterium tuberculosis of new quinoxaline 1,4-di-N-oxides. Bioorg. Med. Chem. 17 385–389. 10.1016/j.bmc.2008.10.086 PubMed DOI

Wang D., Zhong Y., Luo X., Wu S., Xiao R., Bao W., et al. (2011). Pu-erh black tea supplementation decreases quinocetone-induced ROS generation and oxidative DNA damage in Balb/c mice. Food Chem. Toxicol. 49 477–484. 10.1016/j.fct.2010.11.028 PubMed DOI

Wang X., Bai Y., Cheng G., Ihsan A., Zhu F., Wang Y., et al. (2016a). Genomic and proteomic analysis of the inhibition of synthesis and secretion of aldosterone hormone induced by quinocetone in NCI-H295R cells. Toxicology 350–352 1–14. 10.1016/j.tox.2016.03.005 PubMed DOI

Wang X., Fang G. J., Wang Y. L., Ihsan A., Huang L. L., Zhou W., et al. (2011a). Two generation reproduction and teratogenicity studies of feeding cyadox in Wistar rats. Food Chem. Toxicol. 49 1068–1079. 10.1016/j.fct.2011.01.014 PubMed DOI

Wang X., Huang X. J., Ihsan A., Liu Z. Y., Huang L. L., Zhang H. H., et al. (2011b). Metabolites and JAK/STAT pathway were involved in the liver and spleen damage in male Wistar rats fed with mequindox. Toxicology 280 126–134. 10.1016/j.tox.2010.12.001 PubMed DOI

Wang X., Wan D., Ihsan A., Liu Q., Cheng G., Li J., et al. (2015a). Mechanism of adrenocortical toxicity induced by quinocetone and its bidesoxy-quinocetone metabolite in porcine adrenocortical cells in vitro. Food Chem. Toxicol. 84 115–124. 10.1016/j.fct.2015.08.016 PubMed DOI

Wang X., Yang C., Ihsan A., Luo X., Guo P., Cheng G., et al. (2016b). High risk of adrenal toxicity of N1-desoxy quinoxaline 1,4-dioxide derivatives and the protection of oligomeric proanthocyanidins (OPC) in the inhibition of the expression of aldosterone synthetase in H295R cells. Toxicology 341–343 1–16. 10.1016/j.tox.2016.01.005 PubMed DOI

Wang X., Yang P. P., Li J., Ihsan A., Liu Q. Y., Cheng G. Y., et al. (2016c). Genotoxic risk of quinocetone and its possible mechanism in in-vitro studies. Toxicol. Res. 5 446–460. 10.1039/C1035TX00341E PubMed DOI PMC

Wang X., Zhang H., Huang L., Pan Y., Li J., Chen D., et al. (2015b). Deoxidation rates play a critical role in DNA damage mediated by important synthetic drugs, quinoxaline 1,4-dioxides. Chem. Res. Toxicol. 28 470–481. 10.1021/tx5004326 PubMed DOI

Wu Y., Yu H., Wang Y., Huang L., Tao Y., Chen D., et al. (2007). Development of a high-performance liquid chromatography method for the simultaneous quantification of quinoxaline-2-carboxylic acid and methyl-3-quinoxaline-2-carboxylic acid in animal tissues. J. Chromatogr. A 1146 1–7. 10.1016/j.chroma.2006.11.024 PubMed DOI

Yang W., Fu J., Xiao X., Yan H., Bao W., Wang D., et al. (2013). Quinocetone triggers oxidative stress and induces cytotoxicity and genotoxicity in human peripheral lymphocytes of both genders. J. Sci. Food Agric. 93 1317–1325. 10.1002/jsfa.5891 PubMed DOI

Yu M., Wang D., Xu M. J., Liu Y., Wang X., Liu J., et al. (2014). Quinocetone-induced Nrf2/HO-1 pathway suppression aggravates hepatocyte damage of Sprague-Dawley rats. Food Chem. Toxicol. 69 210–219. 10.1016/j.fct.2014.04.026 PubMed DOI

Yu M., Xu M. J., Liu Y., Yang W., Rong Y., Yao P., et al. (2013). Nrf2/ARE is the potential pathway to protect Sprague-Dawley rats against oxidative stress induced by quinocetone. Regul. Toxicol. Pharm. 66 279–285. 10.1016/j.yrtph.2013.04.005 PubMed DOI

Zhang C. M., Wang C. C., Tang S. S., Sun Y., Zhao D. X., Zhang S., et al. (2013). TNFR1/TNF-alpha and mitochondria interrelated signaling pathway mediates quinocetone-induced apoptosis in HepG2 cells. Food Chem. Toxicol. 62 825–838. 10.1016/j.fct.2013.10.022 PubMed DOI

Zhang K., Wang X., Wang C., Zheng H., Li T., Xiao S., et al. (2015). Investigation of quinocetone-induced mitochondrial damage and apoptosis in HepG2 cells and compared with its metabolites. Environ. Toxicol. Pharmacol. 39 555–567. 10.1016/j.etap.2015.01.017 PubMed DOI

Zhang K., Zheng W., Zheng H., Wang C., Wang M., Li T., et al. (2014). Identification of oxidative stress and responsive genes of HepG2 cells exposed to quinocetone, and compared with its metabolites. Cell Biol. Toxicol. 30 313–329. 10.1007/s10565-014-9287-0 PubMed DOI

Zhang T., Tang S. S., Jin X., Liu F. Y., Zhang C. M., Zhao W. X., et al. (2011). c-Myc influences olaquindox-induced apoptosis in human hepatoma G2 cells. Mol. Cell. Biochem. 354 253–261. 10.1007/s11010-011-0825-2 PubMed DOI

Zhao D., Wang C., Tang S., Zhang C., Zhang S., Zhou Y., et al. (2015). Reactive oxygen species-dependent JNK downregulated olaquindox-induced autophagy in HepG2 cells. J. Appl. Toxicol. 35 709–716. 10.1002/jat.3022 PubMed DOI

Zhao W. X., Tang S. S., Jin X., Zhang C. M., Zhang T., Wang C. C., et al. (2013). Olaquindox-induced apoptosis is suppressed through p38 MAPK and ROS-mediated JNK pathways in HepG2 cells. Cell Biol. Toxicol. 29 229–238. 10.1007/s10565-013-9249-y PubMed DOI

Zhao X. J., Huang C., Lei H., Nie X., Tang H., Wang Y. (2011). Dynamic metabolic response of mice to acute mequindox exposure. J. Proteome Res. 10 5183–5190. 10.1021/pr2006457 PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...