Seasonal variation in a diverse beetle assemblage along two elevational gradients in the Australian Wet Tropics
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
29867113
PubMed Central
PMC5986770
DOI
10.1038/s41598-018-26216-8
PII: 10.1038/s41598-018-26216-8
Knihovny.cz E-resources
- MeSH
- Coleoptera physiology MeSH
- Behavior, Animal physiology MeSH
- Rainforest * MeSH
- Humans MeSH
- Seasons * MeSH
- Tropical Climate * MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Australia MeSH
Altered abiotic conditions resulting from human-induced climate change are already driving changes in the spatial and temporal distributions of many organisms. For insects, how species are distributed across elevations is relatively well known, but data on their seasonality at different elevations are lacking. Here we show seasonal variation in beetle abundance and species richness along two spatially-distinct elevational transects (350-1000 m and 100-1000 m asl) in the rainforests of northern Australia. Temperature was the best predictor of temporal abundance and species richness patterns, while rainfall had little influence. Elevation had little effect on seasonal changes in abundance or diversity. Adults of most beetle species exhibited long season-lengths (>6 months of the year) with distinct peaks in abundance during the summer wet-season. We found evidence of phenotypic variation among the more widespread species, with seasonal peaks in abundance often not coinciding across elevations or transects. Due to the wide elevational range of most species, and the lack of consistency in the seasonality of wide-spread individual species, we suggest that many beetles inhabiting the low to mid-elevation mountains in the Wet Tropics, and potentially other tropical rainforests, are not as vulnerable to extinction due to climate change as many other organisms.
Faculty of Science University of South Bohemia Branišovska 31 370 05 Ceske Budejovice Czech Republic
See more in PubMed
Thomas CD, et al. Extinction risk fromclimate change. Nature. 2004;427:145–148. doi: 10.1038/nature02121. PubMed DOI
Hill JK, Griffiths HM, Thomas CD. Climate change and evolutionary adaptations at species’ range margins. Annu. Rev. Entomol. 2011;56:143–159. doi: 10.1146/annurev-ento-120709-144746. PubMed DOI
Williams SE, Bolitho EE, Fox S. Climate change in Australian tropical rainforests: an impending environmental catastrophe. Proc. R. Soc. Lond. B. 2003;270:1887–1892. doi: 10.1098/rspb.2003.2464. PubMed DOI PMC
Colwell RK, Brehm G, Cardelús CL, Gilman AC, Longino JT. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science. 2008;322:258–261. doi: 10.1126/science.1162547. PubMed DOI
Wright SJ, Muller-Landau HC, Schipper J. The future of tropical species on a warmer planet. Conserv. Biol. 2009;23:1418–1426. doi: 10.1111/j.1523-1739.2009.01337.x. PubMed DOI
Staunton KM, Robson SKA, Burwell CJ, Reside AE, Williams SE. Projected distributions and diversity of flightless ground beetles within the Australian Wet Tropics and their environmental correlates. PLOS ONE. 2014;9(2):e88635. doi: 10.1371/journal.pone.0088635. PubMed DOI PMC
Wolda H. Altitude, habitat and tropical insect diversity. Biol. J. Linn. Soc. 1987;30:313–323. doi: 10.1111/j.1095-8312.1987.tb00305.x. DOI
Kumar A, Longino JT, Colwell RK, O’Donnell S. Elevational patterns of diversity and abundance of eusocial paper wasps (Vespidae) in Costa Rica. Biotropica. 2009;41:338–346. doi: 10.1111/j.1744-7429.2008.00483.x. DOI
Williams SE, Shoo LP, Henriod R, Pearson RG. Elevational gradients in species abundance, assemblage structure and energy use of rainforest birds in the Australian Wet Tropics bioregion. Austral Ecol. 2010;35:650–664. doi: 10.1111/j.1442-9993.2009.02073.x. DOI
Bishop TR, Robertson MP, Rensburg BJ, Parr CL. Elevation–diversity patterns through space and time: ant communities of the Maloti‐Drakensberg Mountains of southern Africa. Journal of Biogeography. 2014;41:2256–2268. doi: 10.1111/jbi.12368. DOI
Foord SH, Dippenaar‐Schoeman AS. The effect of elevation and time on mountain spider diversity: a view of two aspects in the Cederberg mountains of South Africa. Journal of Biogeography. 2016;43:2354–2365. doi: 10.1111/jbi.12817. DOI
Janzen DH. Sweep samples of tropical foliage insects: effects of season, vegetation types, elevation, time of day, and insularity. Ecology. 1973;54:687–708. doi: 10.2307/1935359. DOI
Didham, R. K. & Springate, N. D. Determinants of temporal variation in community structure in Arthropods of Tropical Forests: Spatio-temporal Dynamics and Resource Use in the Canopy (ed. Basset, Y., Novotný, V., Miller S. E. & Kitching, R. L.) 28–39 (Cambridge University Press, Cambridge 2003).
Wolda H. Insect seasonality: why? Annu. Rev. Ecol. Syst. 1988;19:1–18. doi: 10.1146/annurev.es.19.110188.000245. DOI
Wolda H. Trends in abundance of tropical forest insects. Oecologia. 1992;89:47–52. doi: 10.1007/BF00319014. PubMed DOI
Frith CB, Frith DW. Seasonality of insect abundance in an Australian upland tropical rainforest. Aust. J. Ecol. 1985;10:237–248. doi: 10.1111/j.1442-9993.1985.tb00886.x. DOI
Frith D, Frith C. Seasonality of litter invertebrate populations in an Australian upland tropical rain forest. Biotropica. 1990;22:181–190. doi: 10.2307/2388411. DOI
Grimbacher PS, Stork NE. Seasonality of a diverse beetle assemblage inhabiting lowland tropical rain forest in Australia. Biotropica. 2009;41:328–337. doi: 10.1111/j.1744-7429.2008.00477.x. DOI
García-Robledo, C., Kuprewicz, E. K., Staines, C. L., Erwin, T. L. & Kress, W. J. Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction. Proceedings of the National Academy of Science, USA113, 680–685. PubMed PMC
Sánchez-Reyes UJ, Niño-Maldonado S, Jones RW. Diversity and altitudinal distribution of Chrysomelidae (Coleoptera) in Peregrina Canyon, Tamaulipas, Mexico. ZooKeys. 2014;417:103–132. doi: 10.3897/zookeys.417.7551. PubMed DOI PMC
Novotny V, Basset Y. Seasonality of sap-sucking insects (Auchenorrhyncha, Hemiptera) feeding on Ficus (Moraceae) in a lowland rain forest in New Guinea. Oecologia. 1998;115:514–522. doi: 10.1007/s004420050549. PubMed DOI
Barone JA. Comparison of herbivores and herbivory in the canopy and understory for two tropical tree species. Biotropica. 2000;32:307–317. doi: 10.1111/j.1744-7429.2000.tb00474.x. DOI
Basset Y. Insect herbivores foraging on seedlings in an unlogged rain forest in Guyana: spatial and temporal considerations. Stud. Neotrop. Fauna Environ. 2000;35:115–129. doi: 10.1076/0165-0521(200008)35:2;1-9;FT115. DOI
Wagner T. Seasonal changes in the canopy arthropod fauna in Rinorea beniensis in Budongo forest, Uganda. Plant Ecol. 2001;153:169–178. doi: 10.1023/A:1017514417913. DOI
Intachat J, Holloway JD, Staines H. Effects of weather and phenology on the abundance and diversity of geometroid moths in a natural Malaysian tropical rain forest. J. Trop. Ecol. 2001;17:411–429. doi: 10.1017/S0266467401001286. DOI
Kishimoto-Yamada K, Itioka T. Seasonality in phytophagous scarabaeid (Melolonthinae and Rutelinae) abundances in an ‘aseasonal’ Bornean rainforest. Insect Conserv. Divers. 2013;6:179–188. doi: 10.1111/j.1752-4598.2012.00201.x. DOI
Tauber MJ, Tauber CA. Insect seasonality: diapause maintenance, termination, and postdiapause development. Annu. Rev. Entomol. 1976;21:81–107. doi: 10.1146/annurev.en.21.010176.000501. DOI
Denlinger DL. Dormancy in tropical insects. Annu. Rev. Entomol. 1986;31:239–264. doi: 10.1146/annurev.en.31.010186.001323. PubMed DOI
Sota T. Effects of temperature and photoperiod on the larval hibernation and adult aestivation of Leptocarabus kumagaii (Coleoptera: Carabidae) Appl. Entomol. Zool. 1987;22:617–623. doi: 10.1303/aez.22.617. DOI
Janzen DH. When, and when not to leave. Oikos. 1987;49:241–243. doi: 10.2307/3565757. DOI
Hunt JH, Brodie RJ, Carithers TP, Goldstein PZ, Janzen DH. Dry season migration by Costa Rican lowland paper wasps to high elevation cold dormancy sites. Biotropica. 1999;31:192–196.
Southwood TRE, Wint GRW, Kennedy CEJ, Greenwood SR. Seasonality, abundance, species richness and specificity of the phytophagous guild of insects on oak (Quercus) canopies. Eur. J. Entomol. 2004;101:43–50. doi: 10.14411/eje.2004.011. DOI
Stork NE, Hammond PM. Species richness and temporal partitioning in the beetle fauna of oak trees (Quercus robur L.) in Richmond Park, UK. Insect Conserv. Divers. 2013;6:67–81. doi: 10.1111/j.1752-4598.2012.00188.x. DOI
Boulter SL, Lambkin CL, Starick NT. Assessing the abundance of seven major arthropod groups along an altitudinal gradient and across seasons in subtropical rainforest. Mem. Queensl. Mus. 2011;55:303–313.
Lambkin CL, et al. Altitudinal and seasonal variation in the family-level assemblages of flies (Diptera) in an Australian subtropical rainforest: one hundred thousand and counting! Mem. Queensl. Mus. 2011;55:315–331.
Stork NE, McBroom J, Gely C, Hamilton AJ. New approaches narrow global species estimates for beetles, insects, and terrestrial arthropods. Proc. Nat. Acad. Sci. USA. 2015;112:7519–7523. doi: 10.1073/pnas.1502408112. PubMed DOI PMC
Lawrence, J. F. & Slipinski, A. Australian Beetles Volume 1: Morphology, Classification and Keys (CSIRO Publishing, Victoria, Australia 2013).
Stork, N. E., Goosem, S & Turton, S. M. Australian rainforests in a global context in Living in a dynamic tropical forest landscape (ed. Stork, N. E. & Turton, S. M.) 4–20 (Blackwell Publishing, Victoria, Australia 2008).
Stork NE, Grimbacher PS. Beetle assemblages from an Australian tropical rainforest show that the canopy and the ground strata contribute equally to biodiversity. Proc. R. Soc. Lond. B. 2006;273:1969–1975. doi: 10.1098/rspb.2006.3521. PubMed DOI PMC
Grimbacher PS, Catterall CP. How much do site age, habitat structure and spatial isolation influence the restoration of rainforest beetle species assemblages? Biol. Conserv. 2007;135:107–118. doi: 10.1016/j.biocon.2006.10.002. DOI
Grimbacher PS, Stork NE. How do beetle assemblages respond to cyclonic disturbance of a fragmented tropical rainforest landscape? Oecologia. 2009;161:591–599. doi: 10.1007/s00442-009-1399-5. PubMed DOI
Pinheiro, J. B. D., Deb, R. S., Sarkar, D. & R Core Team. nlme: Linear and nonlinear mixed effects models, R Package version 3.1–131. Available: https://CRAN.R-project.org/package=nlme (2017).
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available: https://www.R-project.org/ (2015).
Hothorn, T., Bretz, F. & Westfall, P. multcomp: simultaneous inference in general parametric models. Biometrical journal 50, 346–363. R Package version 1.4–6. Available: https://CRAN.R-project.org/package=multcomp (2008). PubMed
Wolda H. Seasonality parameters for insect populations. Res. Pop. Ecol. 1979;20:247–256. doi: 10.1007/BF02512630. DOI
Zar, J. H. Biostatistical Analysis, 4th Edition (Prentice Hall, New Jersey, USA 1999).
Boulter SL, Kitching RL, Howlett BG. Family, visitors and the weather: patterns of flowering in tropical rain forests of northern Australia. J. Ecol. 2006;94:369–382. doi: 10.1111/j.1365-2745.2005.01084.x. DOI
Pinheiro F, Diniz IR, Coelho D, Bandeira MPS. Seasonal pattern of insect abundance in the Brazilian cerrado. Austral Ecol. 2002;27:132–136. doi: 10.1046/j.1442-9993.2002.01165.x. DOI
Hopkins MS, Head J, Ash JE, Hewett RK, Graham AW. Evidence of a Holocene and continuing recent expansion of lowland rain forest in humid, tropical North Queensland. J. Biogeogr. 1996;23:737–745. doi: 10.1111/j.1365-2699.1996.tb00035.x. DOI
VanDerWal, J., Falconi, L., Januchowski, S., Shoo, L. and Storlie, C. SDMTools: Species Distribution Modelling Tools: Tools for processing data associated with species distribution modelling exercises. R package version 1.1–221. http://CRAN.R-project.org/package=SDMTools (2014).