Seasonal variation in a diverse beetle assemblage along two elevational gradients in the Australian Wet Tropics

. 2018 Jun 04 ; 8 (1) : 8559. [epub] 20180604

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29867113
Odkazy

PubMed 29867113
PubMed Central PMC5986770
DOI 10.1038/s41598-018-26216-8
PII: 10.1038/s41598-018-26216-8
Knihovny.cz E-zdroje

Altered abiotic conditions resulting from human-induced climate change are already driving changes in the spatial and temporal distributions of many organisms. For insects, how species are distributed across elevations is relatively well known, but data on their seasonality at different elevations are lacking. Here we show seasonal variation in beetle abundance and species richness along two spatially-distinct elevational transects (350-1000 m and 100-1000 m asl) in the rainforests of northern Australia. Temperature was the best predictor of temporal abundance and species richness patterns, while rainfall had little influence. Elevation had little effect on seasonal changes in abundance or diversity. Adults of most beetle species exhibited long season-lengths (>6 months of the year) with distinct peaks in abundance during the summer wet-season. We found evidence of phenotypic variation among the more widespread species, with seasonal peaks in abundance often not coinciding across elevations or transects. Due to the wide elevational range of most species, and the lack of consistency in the seasonality of wide-spread individual species, we suggest that many beetles inhabiting the low to mid-elevation mountains in the Wet Tropics, and potentially other tropical rainforests, are not as vulnerable to extinction due to climate change as many other organisms.

Zobrazit více v PubMed

Thomas CD, et al. Extinction risk fromclimate change. Nature. 2004;427:145–148. doi: 10.1038/nature02121. PubMed DOI

Hill JK, Griffiths HM, Thomas CD. Climate change and evolutionary adaptations at species’ range margins. Annu. Rev. Entomol. 2011;56:143–159. doi: 10.1146/annurev-ento-120709-144746. PubMed DOI

Williams SE, Bolitho EE, Fox S. Climate change in Australian tropical rainforests: an impending environmental catastrophe. Proc. R. Soc. Lond. B. 2003;270:1887–1892. doi: 10.1098/rspb.2003.2464. PubMed DOI PMC

Colwell RK, Brehm G, Cardelús CL, Gilman AC, Longino JT. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science. 2008;322:258–261. doi: 10.1126/science.1162547. PubMed DOI

Wright SJ, Muller-Landau HC, Schipper J. The future of tropical species on a warmer planet. Conserv. Biol. 2009;23:1418–1426. doi: 10.1111/j.1523-1739.2009.01337.x. PubMed DOI

Staunton KM, Robson SKA, Burwell CJ, Reside AE, Williams SE. Projected distributions and diversity of flightless ground beetles within the Australian Wet Tropics and their environmental correlates. PLOS ONE. 2014;9(2):e88635. doi: 10.1371/journal.pone.0088635. PubMed DOI PMC

Wolda H. Altitude, habitat and tropical insect diversity. Biol. J. Linn. Soc. 1987;30:313–323. doi: 10.1111/j.1095-8312.1987.tb00305.x. DOI

Kumar A, Longino JT, Colwell RK, O’Donnell S. Elevational patterns of diversity and abundance of eusocial paper wasps (Vespidae) in Costa Rica. Biotropica. 2009;41:338–346. doi: 10.1111/j.1744-7429.2008.00483.x. DOI

Williams SE, Shoo LP, Henriod R, Pearson RG. Elevational gradients in species abundance, assemblage structure and energy use of rainforest birds in the Australian Wet Tropics bioregion. Austral Ecol. 2010;35:650–664. doi: 10.1111/j.1442-9993.2009.02073.x. DOI

Bishop TR, Robertson MP, Rensburg BJ, Parr CL. Elevation–diversity patterns through space and time: ant communities of the Maloti‐Drakensberg Mountains of southern Africa. Journal of Biogeography. 2014;41:2256–2268. doi: 10.1111/jbi.12368. DOI

Foord SH, Dippenaar‐Schoeman AS. The effect of elevation and time on mountain spider diversity: a view of two aspects in the Cederberg mountains of South Africa. Journal of Biogeography. 2016;43:2354–2365. doi: 10.1111/jbi.12817. DOI

Janzen DH. Sweep samples of tropical foliage insects: effects of season, vegetation types, elevation, time of day, and insularity. Ecology. 1973;54:687–708. doi: 10.2307/1935359. DOI

Didham, R. K. & Springate, N. D. Determinants of temporal variation in community structure in Arthropods of Tropical Forests: Spatio-temporal Dynamics and Resource Use in the Canopy (ed. Basset, Y., Novotný, V., Miller S. E. & Kitching, R. L.) 28–39 (Cambridge University Press, Cambridge 2003).

Wolda H. Insect seasonality: why? Annu. Rev. Ecol. Syst. 1988;19:1–18. doi: 10.1146/annurev.es.19.110188.000245. DOI

Wolda H. Trends in abundance of tropical forest insects. Oecologia. 1992;89:47–52. doi: 10.1007/BF00319014. PubMed DOI

Frith CB, Frith DW. Seasonality of insect abundance in an Australian upland tropical rainforest. Aust. J. Ecol. 1985;10:237–248. doi: 10.1111/j.1442-9993.1985.tb00886.x. DOI

Frith D, Frith C. Seasonality of litter invertebrate populations in an Australian upland tropical rain forest. Biotropica. 1990;22:181–190. doi: 10.2307/2388411. DOI

Grimbacher PS, Stork NE. Seasonality of a diverse beetle assemblage inhabiting lowland tropical rain forest in Australia. Biotropica. 2009;41:328–337. doi: 10.1111/j.1744-7429.2008.00477.x. DOI

García-Robledo, C., Kuprewicz, E. K., Staines, C. L., Erwin, T. L. & Kress, W. J. Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction. Proceedings of the National Academy of Science, USA113, 680–685. PubMed PMC

Sánchez-Reyes UJ, Niño-Maldonado S, Jones RW. Diversity and altitudinal distribution of Chrysomelidae (Coleoptera) in Peregrina Canyon, Tamaulipas, Mexico. ZooKeys. 2014;417:103–132. doi: 10.3897/zookeys.417.7551. PubMed DOI PMC

Novotny V, Basset Y. Seasonality of sap-sucking insects (Auchenorrhyncha, Hemiptera) feeding on Ficus (Moraceae) in a lowland rain forest in New Guinea. Oecologia. 1998;115:514–522. doi: 10.1007/s004420050549. PubMed DOI

Barone JA. Comparison of herbivores and herbivory in the canopy and understory for two tropical tree species. Biotropica. 2000;32:307–317. doi: 10.1111/j.1744-7429.2000.tb00474.x. DOI

Basset Y. Insect herbivores foraging on seedlings in an unlogged rain forest in Guyana: spatial and temporal considerations. Stud. Neotrop. Fauna Environ. 2000;35:115–129. doi: 10.1076/0165-0521(200008)35:2;1-9;FT115. DOI

Wagner T. Seasonal changes in the canopy arthropod fauna in Rinorea beniensis in Budongo forest, Uganda. Plant Ecol. 2001;153:169–178. doi: 10.1023/A:1017514417913. DOI

Intachat J, Holloway JD, Staines H. Effects of weather and phenology on the abundance and diversity of geometroid moths in a natural Malaysian tropical rain forest. J. Trop. Ecol. 2001;17:411–429. doi: 10.1017/S0266467401001286. DOI

Kishimoto-Yamada K, Itioka T. Seasonality in phytophagous scarabaeid (Melolonthinae and Rutelinae) abundances in an ‘aseasonal’ Bornean rainforest. Insect Conserv. Divers. 2013;6:179–188. doi: 10.1111/j.1752-4598.2012.00201.x. DOI

Tauber MJ, Tauber CA. Insect seasonality: diapause maintenance, termination, and postdiapause development. Annu. Rev. Entomol. 1976;21:81–107. doi: 10.1146/annurev.en.21.010176.000501. DOI

Denlinger DL. Dormancy in tropical insects. Annu. Rev. Entomol. 1986;31:239–264. doi: 10.1146/annurev.en.31.010186.001323. PubMed DOI

Sota T. Effects of temperature and photoperiod on the larval hibernation and adult aestivation of Leptocarabus kumagaii (Coleoptera: Carabidae) Appl. Entomol. Zool. 1987;22:617–623. doi: 10.1303/aez.22.617. DOI

Janzen DH. When, and when not to leave. Oikos. 1987;49:241–243. doi: 10.2307/3565757. DOI

Hunt JH, Brodie RJ, Carithers TP, Goldstein PZ, Janzen DH. Dry season migration by Costa Rican lowland paper wasps to high elevation cold dormancy sites. Biotropica. 1999;31:192–196.

Southwood TRE, Wint GRW, Kennedy CEJ, Greenwood SR. Seasonality, abundance, species richness and specificity of the phytophagous guild of insects on oak (Quercus) canopies. Eur. J. Entomol. 2004;101:43–50. doi: 10.14411/eje.2004.011. DOI

Stork NE, Hammond PM. Species richness and temporal partitioning in the beetle fauna of oak trees (Quercus robur L.) in Richmond Park, UK. Insect Conserv. Divers. 2013;6:67–81. doi: 10.1111/j.1752-4598.2012.00188.x. DOI

Boulter SL, Lambkin CL, Starick NT. Assessing the abundance of seven major arthropod groups along an altitudinal gradient and across seasons in subtropical rainforest. Mem. Queensl. Mus. 2011;55:303–313.

Lambkin CL, et al. Altitudinal and seasonal variation in the family-level assemblages of flies (Diptera) in an Australian subtropical rainforest: one hundred thousand and counting! Mem. Queensl. Mus. 2011;55:315–331.

Stork NE, McBroom J, Gely C, Hamilton AJ. New approaches narrow global species estimates for beetles, insects, and terrestrial arthropods. Proc. Nat. Acad. Sci. USA. 2015;112:7519–7523. doi: 10.1073/pnas.1502408112. PubMed DOI PMC

Lawrence, J. F. & Slipinski, A. Australian Beetles Volume 1: Morphology, Classification and Keys (CSIRO Publishing, Victoria, Australia 2013).

Stork, N. E., Goosem, S & Turton, S. M. Australian rainforests in a global context in Living in a dynamic tropical forest landscape (ed. Stork, N. E. & Turton, S. M.) 4–20 (Blackwell Publishing, Victoria, Australia 2008).

Stork NE, Grimbacher PS. Beetle assemblages from an Australian tropical rainforest show that the canopy and the ground strata contribute equally to biodiversity. Proc. R. Soc. Lond. B. 2006;273:1969–1975. doi: 10.1098/rspb.2006.3521. PubMed DOI PMC

Grimbacher PS, Catterall CP. How much do site age, habitat structure and spatial isolation influence the restoration of rainforest beetle species assemblages? Biol. Conserv. 2007;135:107–118. doi: 10.1016/j.biocon.2006.10.002. DOI

Grimbacher PS, Stork NE. How do beetle assemblages respond to cyclonic disturbance of a fragmented tropical rainforest landscape? Oecologia. 2009;161:591–599. doi: 10.1007/s00442-009-1399-5. PubMed DOI

Pinheiro, J. B. D., Deb, R. S., Sarkar, D. & R Core Team. nlme: Linear and nonlinear mixed effects models, R Package version 3.1–131. Available: https://CRAN.R-project.org/package=nlme (2017).

R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available: https://www.R-project.org/ (2015).

Hothorn, T., Bretz, F. & Westfall, P. multcomp: simultaneous inference in general parametric models. Biometrical journal 50, 346–363. R Package version 1.4–6. Available: https://CRAN.R-project.org/package=multcomp (2008). PubMed

Wolda H. Seasonality parameters for insect populations. Res. Pop. Ecol. 1979;20:247–256. doi: 10.1007/BF02512630. DOI

Zar, J. H. Biostatistical Analysis, 4th Edition (Prentice Hall, New Jersey, USA 1999).

Boulter SL, Kitching RL, Howlett BG. Family, visitors and the weather: patterns of flowering in tropical rain forests of northern Australia. J. Ecol. 2006;94:369–382. doi: 10.1111/j.1365-2745.2005.01084.x. DOI

Pinheiro F, Diniz IR, Coelho D, Bandeira MPS. Seasonal pattern of insect abundance in the Brazilian cerrado. Austral Ecol. 2002;27:132–136. doi: 10.1046/j.1442-9993.2002.01165.x. DOI

Hopkins MS, Head J, Ash JE, Hewett RK, Graham AW. Evidence of a Holocene and continuing recent expansion of lowland rain forest in humid, tropical North Queensland. J. Biogeogr. 1996;23:737–745. doi: 10.1111/j.1365-2699.1996.tb00035.x. DOI

VanDerWal, J., Falconi, L., Januchowski, S., Shoo, L. and Storlie, C. SDMTools: Species Distribution Modelling Tools: Tools for processing data associated with species distribution modelling exercises. R package version 1.1–221. http://CRAN.R-project.org/package=SDMTools (2014).

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Positive effects of the catastrophic Hurricane Patricia on insect communities

. 2018 Oct 09 ; 8 (1) : 15042. [epub] 20181009

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...