Production and cleavage of a fusion protein of porcine trypsinogen and enhanced green fluorescent protein (EGFP) in Pichia pastoris
Language English Country United States Media print-electronic
Document type Journal Article
Grant support
MSM6046137305
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
29872953
DOI
10.1007/s12223-018-0619-y
PII: 10.1007/s12223-018-0619-y
Knihovny.cz E-resources
- MeSH
- Gene Expression MeSH
- Hydrogen-Ion Concentration MeSH
- Culture Media chemistry metabolism MeSH
- Pichia genetics growth & development metabolism MeSH
- Protein Processing, Post-Translational MeSH
- Swine MeSH
- Recombinant Fusion Proteins genetics metabolism MeSH
- Trypsinogen genetics metabolism MeSH
- Green Fluorescent Proteins genetics metabolism MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- enhanced green fluorescent protein MeSH Browser
- Culture Media MeSH
- Recombinant Fusion Proteins MeSH
- Trypsinogen MeSH
- Green Fluorescent Proteins MeSH
Pharmaceutical grade trypsin is in ever-increasing demand for medical and industrial applications. Improving the efficiency of existing biotechnological manufacturing processes is therefore paramount. When produced biotechnologically, trypsinogen-the inactive precursor of trypsin-is advantageous, since active trypsin would impair cell viability. To study factors affecting cell physiology and the production of trypsinogen in fed-batch cultures, we built a fusion protein of porcine trypsinogen and enhanced green fluorescent protein (EGFP) in Pichia pastoris. The experiments were performed with two different pH values (5.0 and 5.9) and two constant specific growth rates (0.02 and 0.04 1/h), maintained using exponential addition of methanol. All the productivity data presented rely on an active determination of trypsin obtained by proteolysis of the trypsinogen produced. The pH of the medium did not affect cell growth, but significantly influenced specific production of trypsinogen: A 1.7-fold higher concentration of trypsinogen was achieved at pH 5.9 (64 mg/L at 0.02 1/h) compared to pH 5.0. EGFP was primarily used to facilitate detection of intracellular protein over the biosynthetic time course. Using flow cytometry with fluorescence detection, cell disruption was avoided, and protein extraction and purification prior to analysis were unnecessary. However, Western blot and SDS-PAGE showed that cleavage of EGFP-trypsinogen fusion protein occurred, probably caused by Pichia-endogenous proteases. The fluorescence analysis did therefore not accurately represent the actual trypsinogen concentration. However, we gained new experimentally-relevant insights, which can be used to avoid misinterpretation of tracking and quantifying as well as online-monitoring of proteins with the frequently used fluorescent tags.
See more in PubMed
Biotechnol Bioeng. 2000 Oct 5;70(1):1-8 PubMed
FEMS Yeast Res. 2017 Nov 1;17(7): PubMed
J Biotechnol. 2003 May 8;102(3):281-90 PubMed
Biotechnol Adv. 2018 Jan - Feb;36(1):182-195 PubMed
J Biotechnol. 2012 Jan;157(1):180-8 PubMed
Biosci Biotechnol Biochem. 1994 Jul;58(7):1245-57 PubMed
Biotechnol Lett. 2015 Jan;37(1):161-7 PubMed
Biotechnol Prog. 2013 Jan-Feb;29(1):11-6 PubMed
J Ind Microbiol Biotechnol. 2012 Nov;39(11):1651-62 PubMed
Biochemistry. 1983 Mar 15;22(6):1459-65 PubMed
Appl Environ Microbiol. 2003 Feb;69(2):1108-13 PubMed
Biotechnol Adv. 2015 Nov 1;33(6 Pt 2):1177-93 PubMed
World J Microbiol Biotechnol. 2014 Jun;30(6):1819-27 PubMed
FEMS Yeast Res. 2005 Jun;5(9):851-7 PubMed
Biotechnol Bioeng. 2010 Aug 15;106(6):918-27 PubMed
Biotechnol Bioeng. 2005 Jan 5;89(1):102-12 PubMed
J Biotechnol. 2007 Mar 10;128(4):824-37 PubMed
Microb Cell Fact. 2009 Feb 10;8:13 PubMed
Biotechnol Lett. 2008 Aug;30(8):1409-14 PubMed
Biotechnol Prog. 2009 Sep-Oct;25(5):1310-6 PubMed
Microb Cell Fact. 2007 May 18;6:15 PubMed
Curr Protoc Cell Biol. 2005 Jul;Chapter 21:21.4.1-21.4.13 PubMed
BMC Biotechnol. 2012 Sep 21;12:65 PubMed
Biotechnol Prog. 2014 May-Jun;30(3):728-35 PubMed
Biosci Biotechnol Biochem. 1995 Mar;59(3):439-44 PubMed
J Gen Physiol. 1934 Mar 20;17(4):591-615 PubMed
Proc Natl Acad Sci U S A. 1964 Feb;51:301-8 PubMed
Chem Rev. 2002 Dec;102(12):4525-48 PubMed
Biotechnol Prog. 2003 May-Jun;19(3):794-802 PubMed
Appl Environ Microbiol. 2010 Jul;76(13):4486-96 PubMed
Diabetes Res Clin Pract. 2011 Dec;94(3):311-21 PubMed
Bioresour Technol. 2018 Jan;247:81-87 PubMed
Appl Microbiol Biotechnol. 2014 Jun;98(12):5301-17 PubMed
Chembiochem. 2018 Jan 4;19(1):7-21 PubMed
Protein Expr Purif. 2010 Jul;72(1):113-24 PubMed
Protein Expr Purif. 2015 Oct;114:149-55 PubMed