Diffusive tail anchorage determines velocity and force produced by kinesin-14 between crosslinked microtubules
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, audiovizuální média
PubMed
29880831
PubMed Central
PMC5992172
DOI
10.1038/s41467-018-04656-0
PII: 10.1038/s41467-018-04656-0
Knihovny.cz E-zdroje
- MeSH
- aparát dělícího vřeténka metabolismus MeSH
- kineziny izolace a purifikace metabolismus MeSH
- mikrotubuly metabolismus MeSH
- mitóza fyziologie MeSH
- optická pinzeta MeSH
- proteinové domény MeSH
- proteiny asociované s mikrotubuly genetika izolace a purifikace metabolismus MeSH
- proteiny Drosophily izolace a purifikace metabolismus MeSH
- rekombinantní proteiny genetika izolace a purifikace metabolismus MeSH
- Saccharomyces cerevisiae - proteiny genetika izolace a purifikace metabolismus MeSH
- vazba proteinů fyziologie MeSH
- zelené fluorescenční proteiny genetika izolace a purifikace metabolismus MeSH
- Publikační typ
- audiovizuální média MeSH
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- Ase1 protein, S cerevisiae MeSH Prohlížeč
- kineziny MeSH
- ncd protein, Drosophila MeSH Prohlížeč
- proteiny asociované s mikrotubuly MeSH
- proteiny Drosophily MeSH
- rekombinantní proteiny MeSH
- Saccharomyces cerevisiae - proteiny MeSH
- zelené fluorescenční proteiny MeSH
Form and function of the mitotic spindle depend on motor proteins that crosslink microtubules and move them relative to each other. Among these are kinesin-14s, such as Ncd, which interact with one microtubule via their non-processive motor domains and with another via their diffusive tail domains, the latter allowing the protein to slip along the microtubule surface. Little is known about the influence of the tail domains on the protein's performance. Here, we show that diffusive anchorage of Ncd's tail domains impacts velocity and force considerably. Tail domain slippage reduced velocities from 270 nm s-1 to 60 nm s-1 and forces from several piconewtons to the sub-piconewton range. These findings challenge the notion that kinesin-14 may act as an antagonizer of other crosslinking motors, such as kinesin-5, during mitosis. It rather suggests a role of kinesin-14 as a flexible element, pliantly sliding and crosslinking microtubules to facilitate remodeling of the mitotic spindle.
Zobrazit více v PubMed
Cai S, Weaver LN, Ems-McClung SC, Walczak CE. Kinesin-14 family proteins HSET/XCTK2 control spindle length by cross-linking and sliding microtubules. Mol. Biol. Cell. 2009;20:1348–1359. doi: 10.1091/mbc.e08-09-0971. PubMed DOI PMC
Endow SA, Chandra R, Komma DJ, Yamamoto AH, Salmon ED. Mutants of the Drosophila ncd microtubule motor protein cause centrosomal and spindle pole defects in mitosis. J. Cell Sci. 1994;107:859–867. PubMed
Goshima G, Nédélec F, Vale RD. Mechanisms for focusing mitotic spindle poles by minus end-directed motor proteins. J. Cell Biol. 2005;171:229–240. doi: 10.1083/jcb.200505107. PubMed DOI PMC
Hallen MA, Liang ZY, Endow SA. Ncd motor binding and transport in the spindle. J. Cell Sci. 2008;121:3834–3841. doi: 10.1242/jcs.038497. PubMed DOI PMC
Matuliene J, et al. Function of a minus-end-directed kinesin-like motor protein in mammalian cells. J. Cell Sci. 1999;112:4041–4050. PubMed
Mountain V, et al. The kinesin-related protein, HSET, opposes the activity of Eg5 and cross-links microtubules in the mammalian mitotic spindle. J. Cell Biol. 1999;147:351–366. doi: 10.1083/jcb.147.2.351. PubMed DOI PMC
deCastro M, Fondecave R, Clarke L, Schmidt CF, Stewart R. Working strokes by single molecules of the kinesin-related microtubule motor ncd. Nat. Cell Biol. 2000;2:724–729. doi: 10.1038/35036357. PubMed DOI
Fink G, et al. The mitotic kinesin-14 Ncd drives directional microtubule-microtubule sliding. Nat. Cell Biol. 2009;11:717–723. doi: 10.1038/ncb1877. PubMed DOI
Furuta K, et al. Measuring collective transport by defined numbers of processive and nonprocessive kinesin motors. Proc. Natl. Acad. Sci. USA. 2013;110:501–506. doi: 10.1073/pnas.1201390110. PubMed DOI PMC
Kapitein LC, et al. The bipolar mitotic kinesin Eg5 moves on both microtubules that it crosslinks. Nature. 2005;435:114–118. doi: 10.1038/nature03503. PubMed DOI
Nitzsche B, et al. Working stroke of the kinesin-14, ncd, comprises two substeps of different direction. Proc. Natl. Acad. Sci. USA. 2016;113:E6582–E6589. doi: 10.1073/pnas.1525313113. PubMed DOI PMC
Shimamoto Y, Forth S, Kapoor TM. Measuring pushing and braking forces generated by ensembles of kinesin-5 crosslinking two microtubules. Dev. Cell. 2015;34:669–681. doi: 10.1016/j.devcel.2015.08.017. PubMed DOI PMC
Zhang P, Dai W, Hahn J, Gilbert SP. Drosophila Ncd reveals an evolutionarily conserved powerstroke mechanism for homodimeric and heterodimeric kinesin-14s. Proc. Natl. Acad. Sci. USA. 2015;112:6359–6364. doi: 10.1073/pnas.1505531112. PubMed DOI PMC
Hentrich C, Surrey T. Microtubule organization by the antagonistic mitotic motors kinesin-5 and kinesin-14. J. Cell Biol. 2010;189:465–480. doi: 10.1083/jcb.200910125. PubMed DOI PMC
Grover R, et al. Transport efficiency of membrane-anchored kinesin-1 motors depends on motor density and diffusivity. Proc. Natl. Acad. Sci. USA. 2016;113:E7185–E7193. doi: 10.1073/pnas.1611398113. PubMed DOI PMC
Fallesen TL, Macosko JC, Holzwarth G. Force-velocity relationship for multiple kinesin motors pulling a magnetic bead. Eur. Biophys. J. 2011;40:1071–1079. doi: 10.1007/s00249-011-0724-1. PubMed DOI
Jamison DK, Driver JW, Diehl MR. Cooperative responses of multiple kinesins to variable and constant loads. J. Biol. Chem. 2012;287:3357–3365. doi: 10.1074/jbc.M111.296582. PubMed DOI PMC
Molodtsov MI, et al. A force-induced directional switch of a molecular motor enables parallel microtubule bundle formation. Cell. 2016;167:539–552.e14. doi: 10.1016/j.cell.2016.09.029. PubMed DOI
Braun M, et al. Adaptive braking by Ase1 prevents overlapping microtubules from sliding completely apart. Nat. Cell Biol. 2011;13:1259–1264. doi: 10.1038/ncb2323. PubMed DOI
Lansky Z, et al. Diffusible crosslinkers generate directed forces in microtubule networks. Cell. 2015;160:1159–1168. doi: 10.1016/j.cell.2015.01.051. PubMed DOI
Gittes F, Meyhofer E, Baek S, Howard J. Directional loading of the kinesin motor molecule as it buckles a microtubule. Biophys. J. 1996;70:418–429. doi: 10.1016/S0006-3495(96)79585-1. PubMed DOI PMC
Mickey B, Howard J. Rigidity of microtubules is increased by stabilizing agents. J. Cell Biol. 1995;130:909–917. doi: 10.1083/jcb.130.4.909. PubMed DOI PMC
Seeger MA, Rice SE. Microtubule-associated protein-like binding of the kinesin-1 tail to microtubules. J. Biol. Chem. 2010;285:8155–8162. doi: 10.1074/jbc.M109.068247. PubMed DOI PMC
Watanabe TM, Yanagida T, Iwane AH. Single molecular observation of self-regulated kinesin motility. Biochemistry. 2010;49:4654–4661. doi: 10.1021/bi9021582. PubMed DOI PMC
Braun M, et al. Changes in microtubule overlap length regulate kinesin-14-driven microtubule sliding. Nat. Chem. Biol. 2017;268:9005. PubMed PMC
Olmsted ZT, Colliver AG, Riehlman TD, Paluh JL. Kinesin-14 and kinesin-5 antagonistically regulate microtubule nucleation by γ-TuRC in yeast and human cells. Nat. Commun. 2014;5:5339. doi: 10.1038/ncomms6339. PubMed DOI PMC
Hoyt MA, He L, Totis L, Saunders WS. Loss of function of Saccharomyces cerevisiae kinesin-related CIN8 and KIP1 is suppressed by KAR3 motor domain mutations. Genetics. 1993;135:35–44. PubMed PMC
Pidoux AL, LeDizet M, Cande WZ. Fission yeast pkl1 is a kinesin-related protein involved in mitotic spindle function. Mol. Biol. Cell. 1996;7:1639–1655. doi: 10.1091/mbc.7.10.1639. PubMed DOI PMC
Sharp DJ, Yu KR, Sisson JC, Sullivan W, Scholey JM. Antagonistic microtubule-sliding motors position mitotic centrosomes in Drosophila early embryos. Nat. Cell Biol. 1999;1:51–54. doi: 10.1038/9025. PubMed DOI
Janson ME, et al. Crosslinkers and motors organize dynamic microtubules to form stable bipolar arrays in fission yeast. Cell. 2007;128:357–368. doi: 10.1016/j.cell.2006.12.030. PubMed DOI
Braun M, Drummond DR, Cross RA, McAinsh AD. The kinesin-14 Klp2 organizes microtubules into parallel bundles by an ATP-dependent sorting mechanism. Nat. Cell Biol. 2009;11:724–730. doi: 10.1038/ncb1878. PubMed DOI
Aiken J, et al. Genome-wide analysis reveals novel and discrete functions for tubulin carboxy-terminal tails. Curr. Biol. 2014;24:1295–1303. doi: 10.1016/j.cub.2014.03.078. PubMed DOI PMC
Mana-Capelli S, McLean JR, Chen CT, Gould KL, McCollum D. The kinesin-14 Klp2 is negatively regulated by the SIN for proper spindle elongation and telophase nuclear positioning. Mol. Biol. Cell. 2012;23:4592–4600. doi: 10.1091/mbc.e12-07-0532. PubMed DOI PMC
Braun M, et al. The human kinesin-14 HSET tracks the tips of growing microtubules in vitro. Cytoskeleton (Hoboken, NJ) 2013;70:515–521. doi: 10.1002/cm.21133. PubMed DOI
Oliveira CR, et al. Pseudotyped baculovirus is an effective gene expression tool for studying molecular function during axolotl limb regeneration. Dev. Biol. 2018;433:262–275. doi: 10.1016/j.ydbio.2017.10.008. PubMed DOI
Ruhnow F, Zwicker D, Diez S. Tracking single particles and elongated filaments with nanometer precision. Biophys. J. 2011;100:2820–2828. doi: 10.1016/j.bpj.2011.04.023. PubMed DOI PMC
Schindelin J, et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC
Schindelin J, Rueden CT, Hiner MC, Eliceiri KW. The ImageJ ecosystem: an open platform for biomedical image analysis. Mol. Reprod. Dev. 2015;82:518–529. doi: 10.1002/mrd.22489. PubMed DOI PMC