Size-strain separation in diffraction line profile analysis
Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
29896061
PubMed Central
PMC5988009
DOI
10.1107/s1600576718005411
PII: ks5592
Knihovny.cz E-resources
- Keywords
- crystalline domain size, line profile analysis, microstrain, powder diffraction,
- Publication type
- Journal Article MeSH
Separation of size and strain effects on diffraction line profiles has been studied in a round robin involving laboratory instruments and synchrotron radiation beamlines operating with different radiation, optics, detectors and experimental configurations. The studied sample, an extensively ball milled iron alloy powder, provides an ideal test case, as domain size broadening and strain broadening are of comparable size. The high energy available at some synchrotron radiation beamlines provides the best conditions for an accurate analysis of the line profiles, as the size-strain separation clearly benefits from a large number of Bragg peaks in the pattern; high counts, reliable intensity values in low-absorption conditions, smooth background and data collection at different temperatures also support the possibility to include diffuse scattering in the analysis, for the most reliable assessment of the line broadening effect. However, results of the round robin show that good quality information on domain size distribution and microstrain can also be obtained using standard laboratory equipment, even when patterns include relatively few Bragg peaks, provided that the data are of good quality in terms of high counts and low and smooth background.
Alfred University Alfred NY 14802 USA
Bruker AXS GmbH Oestliche Rheinbrueckenstrasse 49 76187 Karlsruhe Germany
Department of Civil Environmental and Mechanical Engineering University of Trento Trento Italy
Department of Condensed Matter Physics Charles University Prague Czech Republic
Department of Materials Science and Engineering National Chiao Tung University Hsinchu Taiwan
Elettra Sincrotrone Trieste Trieste Italy
ESRF 71 avenue des Martyrs CS 40220 38043 Grenoble Cedex France
Institute of Materials Science TU Bergakademie Freiberg D 09599 Freiberg Germany
Multidisciplinary Laboratory ICTP 1 34151 Trieste Italy
Röntgenlabor Dr Ermrich Am Kandelborn 7 D 64354 Reinheim Germany
See more in PubMed
Adler, T. & Houska, C. R. (1979). J. Appl. Phys. 50, 3282–3287.
Armstrong, N., Cline, J. P., Ritter, J. & Bonevich, J. (2005). Acta Cryst. A61, C79.
Balzar, D., Audebrand, N., Daymond, M. R., Fitch, A., Hewat, A., Langford, J. I., Le Bail, A., Louër, D., Masson, O., McCowan, C. N., Popa, N. C., Stephens, P. W. & Toby, B. H. (2004). J. Appl. Cryst. 37, 911–924.
Bertaut, E. F. (1950). Acta Cryst. 3, 14–18.
Beyerlein, K. R., Leoni, M. & Scardi, P. (2012). Acta Cryst. A68, 382–392. PubMed
Caglioti, G., Paoletti, A. & Ricci, F. P. (1958). Nucl. Instrum. 3, 223–228.
Cheary, R. W. & Coelho, A. (1992). J. Appl. Cryst. 25, 109–121.
Cline, J. P., Black, D., Windover, D. & Henins, A. (2010). Certificate SRM 660b. NIST, Gaithersburg, Maryland, USA.
Cline, J. P., Deslattes, R. D., Staudenmann, J.-L., Hudson, L. T., Henins, A. & Cheary, R. W. (2000). Certificate SRM 660a. NIST, Gaithersburg, Maryland, USA.
Cline, J. P., Leoni, M., Black, D., Henins, A., Bonevich, J. E., Whitfield, P. S. & Scardi, P. (2013). Powder Diffr. 28(S2), 22–32.
Cline, J. P., Mendenhall, M. H., Black, D., Ritter, J. J. & Henins, A. (2016). Certificate SRM 1979. NIST, Gaithersburg, Maryland, USA.
Dinnebier, R. E. & Billinge, S. J. L. (2008). Powder Diffraction: Theory and Practice. Cambridge: Royal Society of Chemistry.
Guinebretière, R. (2007). X-ray Diffraction by Polycrystalline Materials. London: ISTE Ltd.
Klug, H. P. & Alexander, L. E. (1974). X-ray Diffraction Procedures, 2nd ed. New York: John Wiley.
Krivoglaz, M. A. & Ryaboshapka, K. P. (1963). Fiz. Met. Metalloved. 15, 18–31.
Langford, J. I. & Wilson, A. J. C. (1978). J. Appl. Cryst. 11, 102–113.
Leonardi, A. & Scardi, P. (2016). Metall. Mater. Trans. A, 47, 5722–5732.
Martinez-Garcia, J., Leoni, M. & Scardi, P. (2009). Acta Cryst. A65, 109–119. PubMed
Mendoza Cuevas, A., Bernardini, F., Gianoncelli, A. & Tuniz, C. (2015). X-ray Spectrometry, 44, 105–115.
Mittemeijer, E. J. & Scardi, P. (2004). Diffraction Analysis of the Microstructure of Materials. Berlin: Springer.
Mittemeijer, E. J. & Welzel, U. (2013). Modern Diffraction Methods. Weinheim: Wiley-VCH Verlag and Co.
Popa, N. C. (1998). J. Appl. Cryst. 31, 176–180.
Rebuffi, L. (2015). PhD thesis, University of Trento, Italy.
Rebuffi, L., Troian, A., Ciancio, R., Carlino, E., Amimi, A., Leonardi, A. & Scardi, P. (2016). Sci. Rep. 6, 20712. PubMed PMC
Scardi, P. (2008). Powder Diffraction: Theory and Practice, edited by R. E. Dinnebier & S. J. L. Billinge, ch. 13, pp. 376–413. Cambridge: Royal Society of Chemistry.
Scardi, P. & Dinnebier, R. E. (2010). Extending the Reach of Powder Diffraction Modelling by User Defined Macros, Materials Science Forum, Vol. 651. Trans Tech Publications.
Scardi, P., Leonardi, A., Gelisio, L., Suchomel, M. R., Sneed, B. T., Sheehan, M. K. & Tsung, C.-K. (2015). Phys. Rev. B, 91, 155414–155421.
Scardi, P. & Leoni, M. (2001). Acta Cryst. A57, 604–613. PubMed
Scardi, P., Leoni, M. & Delhez, R. (2004). J. Appl. Cryst. 37, 381–390.
Scardi, P., Rebuffi, L., Abdellatief, M., Flor, A. & Leonardi, A. (2017). J. Appl. Cryst. 50, 508–518. PubMed PMC
Scherrer, P. (1918). Gött. Nachr. 2, 98–100.
Snyder, R. L., Fiala, J. & Bunge, H. J. (1999). Defect and Microstructure Analysis by Diffraction. IUCr/Oxford University Press.
Stokes, A. R. & Wilson, A. J. C. (1942). Math. Proc. Camb. Philos. Soc. 38, 313–322.
Troian, A., Rebuffi, L., Leoni, M. & Scardi, P. (2015). Powder Diffr. 30, S47–S51.
Ungár, T., Dragomir, I., Révész, Á. & Borbély, A. (1999). J. Appl. Cryst. 32, 992–1002.
Ungár, T., Gubicza, J., Ribárik, G. & Borbély, A. (2001). J. Appl. Cryst. 34, 298–310.
Warren, B. E. (1990). X-ray Diffraction. New York: Dover.
Warren, B. E. & Averbach, B. L. (1950). J. Appl. Phys. 21, 595–599.
Wilkens, M. (1970a). Phys. Status Solidi (A), 2, 359–370.
Wilkens, M. (1970b). Fundamental Aspects of Dislocation Theory, National Bureau of Standards Special Publication No. 317, edited by J. A. Simmons, R. de Wit & R. Bullough, Vol. II, pp. 1195–1221. Washington, DC: National Bureau of Standards. PubMed PMC
Williamson, G. K. & Hall, W. H. (1953). Acta Metall. 1, 22–31.
Wilson, A. J. C. (1952). Acta Cryst. 5, 318–322.
Wilson, A. J. C. (1955). Nuovo Cim, 1, 277–283.
Wilson, A. J. C. (1962). X-ray Optics, 2nd ed., p. 40. London: Methuen.
Wilson, A. J. C. (1963). Mathematical Theory of X-ray Powder Diffractometry. Eindhoven: Philips Technical Library/Gordon and Breach.