• This record comes from PubMed

Size-strain separation in diffraction line profile analysis

. 2018 Jun 01 ; 51 (Pt 3) : 831-843. [epub] 20180529

Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection

Document type Journal Article

Separation of size and strain effects on diffraction line profiles has been studied in a round robin involving laboratory instruments and synchrotron radiation beamlines operating with different radiation, optics, detectors and experimental configurations. The studied sample, an extensively ball milled iron alloy powder, provides an ideal test case, as domain size broadening and strain broadening are of comparable size. The high energy available at some synchrotron radiation beamlines provides the best conditions for an accurate analysis of the line profiles, as the size-strain separation clearly benefits from a large number of Bragg peaks in the pattern; high counts, reliable intensity values in low-absorption conditions, smooth background and data collection at different temperatures also support the possibility to include diffuse scattering in the analysis, for the most reliable assessment of the line broadening effect. However, results of the round robin show that good quality information on domain size distribution and microstrain can also be obtained using standard laboratory equipment, even when patterns include relatively few Bragg peaks, provided that the data are of good quality in terms of high counts and low and smooth background.

See more in PubMed

Adler, T. & Houska, C. R. (1979). J. Appl. Phys. 50, 3282–3287.

Armstrong, N., Cline, J. P., Ritter, J. & Bonevich, J. (2005). Acta Cryst. A61, C79.

Balzar, D., Audebrand, N., Daymond, M. R., Fitch, A., Hewat, A., Langford, J. I., Le Bail, A., Louër, D., Masson, O., McCowan, C. N., Popa, N. C., Stephens, P. W. & Toby, B. H. (2004). J. Appl. Cryst. 37, 911–924.

Bertaut, E. F. (1950). Acta Cryst. 3, 14–18.

Beyerlein, K. R., Leoni, M. & Scardi, P. (2012). Acta Cryst. A68, 382–392. PubMed

Caglioti, G., Paoletti, A. & Ricci, F. P. (1958). Nucl. Instrum. 3, 223–228.

Cheary, R. W. & Coelho, A. (1992). J. Appl. Cryst. 25, 109–121.

Cline, J. P., Black, D., Windover, D. & Henins, A. (2010). Certificate SRM 660b. NIST, Gaithersburg, Maryland, USA.

Cline, J. P., Deslattes, R. D., Staudenmann, J.-L., Hudson, L. T., Henins, A. & Cheary, R. W. (2000). Certificate SRM 660a. NIST, Gaithersburg, Maryland, USA.

Cline, J. P., Leoni, M., Black, D., Henins, A., Bonevich, J. E., Whitfield, P. S. & Scardi, P. (2013). Powder Diffr. 28(S2), 22–32.

Cline, J. P., Mendenhall, M. H., Black, D., Ritter, J. J. & Henins, A. (2016). Certificate SRM 1979. NIST, Gaithersburg, Maryland, USA.

Dinnebier, R. E. & Billinge, S. J. L. (2008). Powder Diffraction: Theory and Practice. Cambridge: Royal Society of Chemistry.

Guinebretière, R. (2007). X-ray Diffraction by Polycrystalline Materials. London: ISTE Ltd.

Klug, H. P. & Alexander, L. E. (1974). X-ray Diffraction Procedures, 2nd ed. New York: John Wiley.

Krivoglaz, M. A. & Ryaboshapka, K. P. (1963). Fiz. Met. Metalloved. 15, 18–31.

Langford, J. I. & Wilson, A. J. C. (1978). J. Appl. Cryst. 11, 102–113.

Leonardi, A. & Scardi, P. (2016). Metall. Mater. Trans. A, 47, 5722–5732.

Martinez-Garcia, J., Leoni, M. & Scardi, P. (2009). Acta Cryst. A65, 109–119. PubMed

Mendoza Cuevas, A., Bernardini, F., Gianoncelli, A. & Tuniz, C. (2015). X-ray Spectrometry, 44, 105–115.

Mittemeijer, E. J. & Scardi, P. (2004). Diffraction Analysis of the Microstructure of Materials. Berlin: Springer.

Mittemeijer, E. J. & Welzel, U. (2013). Modern Diffraction Methods. Weinheim: Wiley-VCH Verlag and Co.

Popa, N. C. (1998). J. Appl. Cryst. 31, 176–180.

Rebuffi, L. (2015). PhD thesis, University of Trento, Italy.

Rebuffi, L., Troian, A., Ciancio, R., Carlino, E., Amimi, A., Leonardi, A. & Scardi, P. (2016). Sci. Rep. 6, 20712. PubMed PMC

Scardi, P. (2008). Powder Diffraction: Theory and Practice, edited by R. E. Dinnebier & S. J. L. Billinge, ch. 13, pp. 376–413. Cambridge: Royal Society of Chemistry.

Scardi, P. & Dinnebier, R. E. (2010). Extending the Reach of Powder Diffraction Modelling by User Defined Macros, Materials Science Forum, Vol. 651. Trans Tech Publications.

Scardi, P., Leonardi, A., Gelisio, L., Suchomel, M. R., Sneed, B. T., Sheehan, M. K. & Tsung, C.-K. (2015). Phys. Rev. B, 91, 155414–155421.

Scardi, P. & Leoni, M. (2001). Acta Cryst. A57, 604–613. PubMed

Scardi, P., Leoni, M. & Delhez, R. (2004). J. Appl. Cryst. 37, 381–390.

Scardi, P., Rebuffi, L., Abdellatief, M., Flor, A. & Leonardi, A. (2017). J. Appl. Cryst. 50, 508–518. PubMed PMC

Scherrer, P. (1918). Gött. Nachr. 2, 98–100.

Snyder, R. L., Fiala, J. & Bunge, H. J. (1999). Defect and Microstructure Analysis by Diffraction. IUCr/Oxford University Press.

Stokes, A. R. & Wilson, A. J. C. (1942). Math. Proc. Camb. Philos. Soc. 38, 313–322.

Troian, A., Rebuffi, L., Leoni, M. & Scardi, P. (2015). Powder Diffr. 30, S47–S51.

Ungár, T., Dragomir, I., Révész, Á. & Borbély, A. (1999). J. Appl. Cryst. 32, 992–1002.

Ungár, T., Gubicza, J., Ribárik, G. & Borbély, A. (2001). J. Appl. Cryst. 34, 298–310.

Warren, B. E. (1990). X-ray Diffraction. New York: Dover.

Warren, B. E. & Averbach, B. L. (1950). J. Appl. Phys. 21, 595–599.

Wilkens, M. (1970a). Phys. Status Solidi (A), 2, 359–370.

Wilkens, M. (1970b). Fundamental Aspects of Dislocation Theory, National Bureau of Standards Special Publication No. 317, edited by J. A. Simmons, R. de Wit & R. Bullough, Vol. II, pp. 1195–1221. Washington, DC: National Bureau of Standards. PubMed PMC

Williamson, G. K. & Hall, W. H. (1953). Acta Metall. 1, 22–31.

Wilson, A. J. C. (1952). Acta Cryst. 5, 318–322.

Wilson, A. J. C. (1955). Nuovo Cim, 1, 277–283.

Wilson, A. J. C. (1962). X-ray Optics, 2nd ed., p. 40. London: Methuen.

Wilson, A. J. C. (1963). Mathematical Theory of X-ray Powder Diffractometry. Eindhoven: Philips Technical Library/Gordon and Breach.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...