Effects of increased temperature on plant communities depend on landscape location and precipitation

. 2018 Jun ; 8 (11) : 5267-5278. [epub] 20180508

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29938051

Global climate change is affecting and will continue to affect ecosystems worldwide. Specifically, temperature and precipitation are both expected to shift globally, and their separate and interactive effects will likely affect ecosystems differentially depending on current temperature, precipitation regimes, and other biotic and environmental factors. It is not currently understood how the effects of increasing temperature on plant communities may depend on either precipitation or where communities lie on soil moisture gradients. Such knowledge would play a crucial role in increasing our predictive ability for future effects of climate change in different systems. To this end, we conducted a multi-factor global change experiment at two locations, differing in temperature, moisture, aspect, and plant community composition, on the same slope in the northern Mongolian steppe. The natural differences in temperature and moisture between locations served as a point of comparison for the experimental manipulations of temperature and precipitation. We conducted two separate experiments, one examining the effect of climate manipulation via open-top chambers (OTCs) across the two different slope locations, the other a factorial OTC by watering experiment at one of the two locations. By combining these experiments, we were able to assess how OTCs impact plant productivity and diversity across a natural and manipulated range of soil moisture. We found that warming effects were context dependent, with the greatest negative impacts of warming on diversity in the warmer, drier upper slope location and in the unwatered plots. Our study is an important step in understanding how global change will affect ecosystems across multiple scales and locations.

Zobrazit více v PubMed

Amthor, J. (2000). The McCree–de Wit‐Penning de Vries‐Thornley respiration paradigms: 30 years later. Annals of Botany, 86, 1–20. https://doi.org/10.1006/anbo.2000.1175 DOI

Amthor, J. S. , Hanson, P. J. , Norby, R. J. , & Wullschleger, S. D. (2010). A comment on “Appropriate experimental ecosystem warming methods by ecosystem, objective, and practicality” by Aronson and McNulty. Agricultural and Forest Meteorology, 150, 497–498. https://doi.org/10.1016/j.agrformet.2009.11.020 DOI

Aronson, E. L. , & McNulty, S. G. (2009). Appropriate experimental ecosystem warming methods by ecosystem, objective, and practicality. Agricultural and Forest Meteorology, 149, 1791–1799. https://doi.org/10.1016/j.agrformet.2009.06.007 DOI

Báez, S. , Collins, S. L. , Pockman, W. T. , Johnson, J. E. , & Small, E. E. (2012). Effects of experimental rainfall manipulations on Chihuahuan Desert grassland and shrubland plant communities. Oecologia, 172, 1117–1127. PubMed

Bayasgalan, B. , Mijiddorj, R. , Gombluudev, P. , Oyunbaatar, D. , Bayasgalan, M. , Tas, A. , … Molomjamts, L. (2009). Climate change and sustainable livelihood of rural people in Mongolia In Devissher T., O'Brien G., O'Keefe P. & Tellam I. (Eds.), The adaptation continuum: Groundwork for the future (pp. 193–213). Leusden, the Netherlands: ETC. Foundation.

Bernacchi, C. J. (2002). Temperature response of mesophyll conductance. Implications for the determination of rubisco enzyme kinetics and for limitations to photosynthesis in vivo. Plant Physiology, 130, 1992–1998. https://doi.org/10.1104/pp.008250 PubMed DOI PMC

Berry, J. , & Bjorkman, O. (1980). Photosynthetic response and adaptation to temperature in higher plants. Annual Review of Plant Physiology, 31(1), 491–543. https://doi.org/10.1146/annurev.pp.31.060180.002423 DOI

Blois, J. L. , Williams, J. W. , & Fitzpatrick, M. C. (2013). Space can substitute for time in predicting climate‐change effects on biodiversity. Proceedings of the National Academy of Sciences of the United States of America, 110(23), 9374–9379. https://doi.org/10.1073/pnas.1220228110 PubMed DOI PMC

Blumenthal, D. M. , Kray, J. A. , Ortmans, W. , Ziska, L. H. , & Pendall, E. (2016). Cheatgrass is favored by warming but not CO2 enrichment in a semi‐arid grassland. Global Change Biology, 22(9), 3026–3038. https://doi.org/10.1111/gcb.13278 PubMed DOI

Bokhorst, S. , Huiskes, A. , Aerts, R. , Convey, P. , Cooper, E. J. , Dalen, L. , … Johnstone, J. (2013). Variable temperature effects of open top chambers at polar and alpine sites explained by irradiance and snow depth. Global Change Biology, 19(1), 64–74. https://doi.org/10.1111/gcb.12028 PubMed DOI

Carlyle, C. N. , Fraser, L. H. , & Turkington, R. (2011). Tracking soil temperature and moisture in a multi‐factor climate experiment in temperate grassland: Do climate manipulation methods produce their intended effects? Ecosystems, 14(3), 489–502. https://doi.org/10.1007/s10021-011-9425-y DOI

Cowles, J. M. , Wragg, P. D. , Wright, A. J. , Powers, J. S. , & Tilman, D. (2016). Shifting grassland plant community structure drives positive interactive effects of warming and diversity on aboveground net primary productivity. Global Change Biology, 22, 741–749. https://doi.org/10.1111/gcb.13111 PubMed DOI

De Boeck, H. J. , Vicca, S. , Roy, J. , Nijs, I. , Milcu, A. , Kreyling, J. , … Beier, C. (2015). Global change experiments: Challenges and opportunities. BioScience, 65(9), 922–931. https://doi.org/10.1093/biosci/biv099 DOI

Dieleman, W. I. , Vicca, S. , Dijkstra, F. A. , Hagedorn, F. , Hovenden, M. J. , Larsen, K. S. , … King, J. (2012). Simple additive effects are rare: A quantitative review of plant biomass and soil process responses to combined manipulations of CO2 and temperature. Global Change Biology, 18(9), 2681–2693. https://doi.org/10.1111/j.1365-2486.2012.02745.x PubMed DOI

Elmendorf, S. C. , Henry, G. H. R. , Hollister, R. D. , Björk, R. G. , Bjorkman, A. D. , Callaghan, T. V. , … Wookey, P. A. (2011). Global assessment of experimental climate warming on tundra vegetation: Heterogeneity over space and time. Ecology Letters, 15, 164–175. PubMed

Elmendorf, S. C. , Henry, G. H. R. , Hollister, R. D. , Björk, R. G. , Boulanger‐Lapointe, N. , Cooper, E. J. , … Wipf, S. (2012). Plot‐scale evidence of tundra vegetation change and links to recent summer warming. Nature Climate Change, 2, 453–457. https://doi.org/10.1038/nclimate1465 DOI

Elmendorf, S. C. , Henry, G. H. R. , Hollister, R. D. , Fosaa, A. M. , Gould, W. A. , Hermanutz, L. , … Walker, M. D. (2015). Experiment, monitoring, and gradient methods used to infer climate change effects on plant communities yield consistent patterns. Proceedings of the National Academy of Sciences of the United States of America, 112, 448–452. https://doi.org/10.1073/pnas.1410088112 PubMed DOI PMC

Gedan, K. B. , & Bertness, M. D. (2009). Experimental warming causes rapid loss of plant diversity in New England salt marshes. Ecology Letters, 12, 842–848. https://doi.org/10.1111/j.1461-0248.2009.01337.x PubMed DOI

Goulden, C. E. , Mead, J. , Horwitz, R. , Goulden, M. , Nandintsetseg, B. , McCormick, S. , … Petraitis, P. S.. (2016). Interviews of Mongolian herders and high resolution precipitation data reveal an increase in short heavy rains and thunderstorm activity in semi‐arid Mongolia. Climatic Change, 136, 281–295. https://doi.org/10.1007/s10584-016-1614-4 DOI

Harmens, H. , Williams, P. D. , Peters, S. L. , Bambrick, M. T. , Hopkins, A. , & Ashenden, T. W. (2004). Impacts of elevated atmospheric CO2 and temperature on plant community structure of a temperate grassland are modulated by cutting frequency. Grass and Forage Science, 59, 144–156. https://doi.org/10.1111/j.1365-2494.2004.00414.x DOI

Hautier, Y. , Niklaus, P. A. , & Hector, A. (2009). Competition for light causes plant biodiversity loss after eutrophication. Science, 324, 636–638. https://doi.org/10.1126/science.1169640 PubMed DOI

Hikosaka, K. (2005). Temperature acclimation of photosynthesis: Mechanisms involved in the changes in temperature dependence of photosynthetic rate. Journal of Experimental Botany, 57, 291–302. PubMed

Hill, M. O. (1973). Diversity and evenness: A unifying notation and its consequences. Ecology, 54(2), 427–432. https://doi.org/10.2307/1934352 DOI

IPCC (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [T.F. Stocker, Qin D., Plattner G.‐K., Tignor M., Allen S.K., Boschung J., Nauels A., Xia Y., Bex V. and Midgley P.M. (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp, https://doi.org/10.1017/CBO9781107415324. DOI

Klein, J. A. , Harte, J. , & Zhao, X.‐Q. (2004). Experimental warming causes large and rapid species loss, dampened by simulated grazing, on the Tibetan Plateau. Ecology Letters, 7, 1170–1179. https://doi.org/10.1111/j.1461-0248.2004.00677.x DOI

Knapp, A. K. , Fay, P. A. , Blair, J. M. , Collins, S. L. , Smith, M. D. , Carlisle, J. D. , … McCarron, J. K. (2002). Rainfall variability, carbon cycling, and plant species diversity in a mesic grassland. Science, 298, 2202–2205. https://doi.org/10.1126/science.1076347 PubMed DOI

Liancourt, P. , Boldgiv, B. , Song, D. S. , Spence, L. A. , Helliker, B. R. , Petraitis, P. S. , & Casper, B. B. (2015). Leaf‐trait plasticity and species vulnerability to climate change in a Mongolian steppe. Global Change Biology, 21, 3489–3498. https://doi.org/10.1111/gcb.12934 PubMed DOI

Liancourt, P. , Sharkhuu, A. , Ariuntsetseg, L. , Boldgiv, B. , Helliker, B. R. , Plante, A. F. , … Casper, B. B. (2012). Temporal and spatial variation in how vegetation alters the soil moisture response to climate manipulation. Plant and Soil, 351, 249–261. https://doi.org/10.1007/s11104-011-0956-y DOI

Liancourt, P. , Spence, L. A. , Song, D. S. , Lkhagva, A. , Sharkhuu, A. , Boldgiv, B. , … Casper, B. B. (2013). Plant response to climate change varies with topography, interactions with neighbors, and ecotype. Ecology, 94, 444–453. https://doi.org/10.1890/12-0780.1 PubMed DOI

Lindeman, R. L. (1942). The trophic‐dynamic aspect of ecology. Ecology, 23, 399–417. https://doi.org/10.2307/1930126 DOI

Liu, D. , Peñuelas, J. , Ogaya, R. , Estiarte, M. , Tielbörger, K. , Slowik, F. , … Bilton, M. C. (2017). Species selection under long‐term experimental warming and drought explained by climatic distributions. New Phytologist, 217(4), 1494–1506. https://doi.org/10.1111/nph.14925 PubMed DOI

Loreau, M. , & de Mazancourt, C. (2013). Biodiversity and ecosystem stability: A synthesis of underlying mechanisms. Ecology Letters, 16, 106–115. https://doi.org/10.1111/ele.12073 PubMed DOI

Marion, G. M. , Henry, G. H. R. , Freckman, D. W. , Johnstone, J. , Jones, G. , Jones, M. H. , … Virginia, R. A. (1997). Open‐top designs for manipulating field temperature in high‐latitude ecosystems. Global Change Biology, 3, 20–32. https://doi.org/10.1111/j.1365-2486.1997.gcb136.x DOI

Medek, D. E. , Evans, J. R. , Schortemeyer, M. , & Ball, M. C. (2011). Effects of growth temperature on photosynthetic gas exchange characteristics and hydraulic anatomy in leaves of two cold‐climate Poaspecies. Functional Plant Biology, 38, 54–59. https://doi.org/10.1071/FP10023 PubMed DOI

Metz, J. , & Tielbörger, K. (2016). Spatial and temporal aridity gradients provide poor proxies for plant‐plant interactions under climate change: A large‐scale experiment. Functional Ecology, 30, 20–29. https://doi.org/10.1111/1365-2435.12599 DOI

Millenial Ecosystem Assessment (2005). Ecosystems and human well‐being. Washington, DC: Island Press.

Namkhaijanstan, G. (2006). Climate and climate change of the Hövsgöl region In Goulden C. E., Sitnikova T., Gelhaus J., & Boldgiv B. (Eds.), The geology, biodiversity and ecology of Lake Hövsgöl (Mongolia). Leiden, the Netherland: Backhuys Publisher.

Nandintsetseg, B. , Greene, J. S. , & Goulden, C. E. (2007). Trends in extreme daily precipitation and temperature near lake Hövsgöl, Mongolia. International Journal of Climatology, 27, 341–347. https://doi.org/10.1002/(ISSN)1097-0088 DOI

Pinheiro, J. , Bates, D. , DebRoy, S. , Sarkar, D. ; R Core Team (2017). nlme: Linear and nonlinear mixed effects models. R package version 3.1‐131. Retrieved from https://CRAN.R-project.org/package=nlme

Prieto, P. , Penuelas, J. , Lloret, F. , Llorens, L. , & Estiarte, M. (2009). Experimental drought and warming decrease diversity and slow down post‐fire succession in a Mediterranean shrubland. Ecography, 32, 623–636. https://doi.org/10.1111/j.1600-0587.2009.05738.x DOI

Reich, P. B. , Knops, J. M. H. , Tilman, D. , Craine, J. , Ellsworth, D. , Tjoelker, M. , … Bengston, W. (2001). Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition. Nature, 410, 809–812. https://doi.org/10.1038/35071062 PubMed DOI

Rich, R. L. , Stefanski, A. , Montgomery, R. A. , Hobbie, S. E. , Kimball, B. A. , & Reich, P. B. (2015). Design and performance of combined infrared canopy and belowground warming in the B4WarmED (Boreal Forest Warming at an Ecotone in Danger) experiment. Global Change Biology, 21, 2334–2348. https://doi.org/10.1111/gcb.12855 PubMed DOI

Rustad, L. , Campbell, J. , Marion, G. , Norby, R. , & Mitchell, M.. (2001). A meta‐analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia, 126(4), 543–562. https://doi.org/10.1007/s004420000544 PubMed DOI

Sherry, R. A. , Weng, E. , Arnone, J. A. III , Johnson, D. W. , Schimel, D. S. , Verburg, P. S. , … Luo, Y. (2008). Lagged effects of experimental warming and doubled precipitation on annual and seasonal aboveground biomass production in a tallgrass prairie. Global Change Biology, 14, 2923–2936. https://doi.org/10.1111/j.1365-2486.2008.01703.x DOI

Spence, L. A. , Liancourt, P. , Boldgiv, B. , Petraitis, P. S. , & Casper, B. B. (2014). Climate change and grazing interact to alter flowering patterns in the Mongolian steppe. Oecologia, 175(1), 251–260. PubMed

Sundqvist, M. K. , Sanders, N. J. , & Wardle, D. A. (2013). Community and ecosystem responses to elevational gradients: Processes, mechanisms, and insights for global change. Annual Review of Ecology, Evolution, and Systematics, 44, 261–280. https://doi.org/10.1146/annurev-ecolsys-110512-135750 DOI

Tilman, D. , Isbell, F. , & Cowles, J. M. (2014). Biodiversity and ecosystem functioning. Annual Review of Ecology, Evolution, and Systematics, 45, 471–493. https://doi.org/10.1146/annurev-ecolsys-120213-091917 DOI

Tilman, D. , Reich, P. B. , & Knops, J. M. H. (2006). Biodiversity and ecosystem stability in a decade‐long grassland experiment. Nature, 441, 629–632. https://doi.org/10.1038/nature04742 PubMed DOI

Vandandorj, S. , Munkhjargal, E. , Boldgiv, B. , & Gantsetseg, B. (2017). Changes in event number and duration of rain types over Mongolia from 1981 to 2014. Environmental Earth Sciences, 76, 70 https://doi.org/10.1007/s12665-016-6380-0 DOI

Vicente‐Serrano, S. M. , Beguería, S. , & López‐Moreno, J. I. (2010). A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. Journal of Climate, 23, 1696–1718. https://doi.org/10.1175/2009JCLI2909.1 DOI

Way, D. A. , & Oren, R. (2010). Differential responses to changes in growth temperature between trees from different functional groups and biomes: A review and synthesis of data. Tree Physiology, 30, 669–688. https://doi.org/10.1093/treephys/tpq015 PubMed DOI

Wertin, T. M. , Reed, S. C. , & Belnap, J. (2015). C3 and C4 plant responses to increased temperatures and altered monsoonal precipitation in a cool desert on the Colorado Plateau, USA. Oecologia, 177, 997–1013. https://doi.org/10.1007/s00442-015-3235-4 PubMed DOI

Wu, Z. , Dijkstra, P. , Koch, G. W. , Penuelas, J. , & Hungate, B. A. (2011). Responses of terrestrial ecosystems to temperature and precipitation change: A meta‐analysis of experimental manipulation. Global Change Biology, 17, 927–942. https://doi.org/10.1111/j.1365-2486.2010.02302.x DOI

Xu, Z. , Wan, S. , Ren, H. , Han, X. , Li, M.‐H. , Cheng, W. , & Jiang, Y. (2012). Effects of water and nitrogen addition on species turnover in temperate grasslands in Northern China. PLoS ONE, 7, e39762–e39769. https://doi.org/10.1371/journal.pone.0039762 PubMed DOI PMC

Yang, H. , Li, Y. , Wu, M. , Zhang, Z. , Li, L. , & Wan, S. (2011). Plant community responses to nitrogen addition and increased precipitation: The importance of water availability and species traits. Global Change Biology, 17, 2936–2944. https://doi.org/10.1111/j.1365-2486.2011.02423.x DOI

Yang, H. , Wu, M. , Liu, W. , Zhang, Z. , Zhang, N. , & Wan, S. (2011). Community structure and composition in response to climate change in a temperate steppe. Global Change Biology, 17, 452–465. https://doi.org/10.1111/j.1365-2486.2010.02253.x DOI

Zavaleta, E. S. , Shaw, M. R. , Chiariello, N. R. , Thomas, B. D. , Cleland, E. E. , Field, C. B. , & Mooney, H. A. (2003). Grassland responses to three years of elevated temperature, CO2, precipitation, and N deposition. Ecological Monographs, 73, 585–604. https://doi.org/10.1890/02-4053 DOI

Zhu, K. , Chiariello, N. R. , Tobeck, T. , Fukami, T. , & Field, C. B. (2017). Nonlinear, interacting responses to climate limit grassland production under global change. Proceedings of the National Academy of Sciences United States of America, 113(38), 10589–10594. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...