Methods of Ex Situ and In Situ Investigations of Structural Transformations: The Case of Crystallization of Metallic Glasses

. 2018 Jun 07 ; (136) : . [epub] 20180607

Jazyk angličtina Země Spojené státy americké Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, audiovizuální média

Perzistentní odkaz   https://www.medvik.cz/link/pmid29939184

We demonstrate the use of two nuclear-based analytical methods that can follow the modifications of microstructural arrangement of iron-based metallic glasses (MGs). Despite their amorphous nature, the identification of hyperfine interactions unveils faint structural modifications. For this purpose, we have employed two techniques that utilize nuclear resonance among nuclear levels of a stable 57Fe isotope, namely Mössbauer spectrometry and nuclear forward scattering (NFS) of synchrotron radiation. The effects of heat treatment upon (Fe2.85Co1)77Mo8Cu1B14 MG are discussed using the results of ex situ and in situ experiments, respectively. As both methods are sensitive to hyperfine interactions, information on structural arrangement as well as on magnetic microstructure is readily available. Mössbauer spectrometry performed ex situ describes how the structural arrangement and magnetic microstructure appears at room temperature after the annealing under certain conditions (temperature, time), and thus this technique inspects steady states. On the other hand, NFS data are recorded in situ during dynamically changing temperature and NFS examines transient states. The use of both techniques provides complementary information. In general, they can be applied to any suitable system in which it is important to know its steady state but also transient states.

Zobrazit více v PubMed

McHenry ME, Laughlin DE. Nano-scale materials development for future magnetic applications. Acta Mater. 2000;48(1):223–238.

Chang Y-H, Hsu C-H, Chu H-L, Chang C-W, Chan W-S, Lee Ch-Y, Yao C-S, He Y-L. Effect of uneven surface on magnetic properties of Fe-based amorphous transformer. Int. J. Elect. Comp. Energetic, Electronic and Commun. Eng. 2011;5(8):1160–1164.

Herzer G. Modern soft magnets: Amorphous and nanocrystalline materials. Acta Mater. 2013;61(3):718–734.

Yoshizawa Y, Oguma A, Yamauchi K. New Fe-based soft magnetic-alloys composed of ultrafine grain-structure. J. Appl. Phys. 1988;64(10):6044–6046.

Suzuki K, Kataoka N, Inoue A, Makino A, Masumoto T. High saturation magnetization and soft magnetic-properties of bcc Fe-Zr-B alloys with ultrafine grain-structure. Mater. Trans. JIM. 1990;31(8):743–746.

Willard MA, Laughlin DE, McHenry ME, Thoma D, Sickafus K, Cross JO, Harris VG. Structure and magnetic properties of (Fe0.5Co0.5)(88)Zr7B4Cu1 nanocrystalline alloys. J. Appl. Phys. 1998;84(88):6773–6777.

Makino A, Men H, Kubota T, Yubuta K, Inoue A. New Fe-metalloids based nanocrystalline alloys with high B-s of 1.9 T and excellent magnetic softness. J. Appl. Phys. 2009;105(7)

Suzuki K, Herzer G. Magnetic-field-induced anisotropies and exchange softening in Fe-rich nanocrystalline soft magnetic alloys. Scripta Mater. 2012;67(6):548–553.

Hasegawa R. Advances in amorphous and nanocrystalline materials. J. Magn. Magn. Mater. 2012;324(21):3555–3557.

Hristoforou E, Reilly RE. Nonuniformity in amorphous ribbon delay lines after stress and current annealing. J. Appl. Phys. 1991;69(8):5008–5010.

Hristoforou E, Niarchos D. Fast characterization of magnetostrictive delay-lines. IEEE Trans. Magn. 1993;29(6):3147–3149.

Miglierini M, Lančok A, Kohout J. Hyperfine fields in nanocrystalline Fe-Zr-B probed by 57Fe nuclear magnetic resonance spectroscopy. Appl. Phys. Lett. 2010;96(21)

Kohout J, Křišťan P, Kubániová D, Kmječ T, Závěta K, Štepánková H, Lančok A, Sklenka Ľ, Matúš P, Miglierini M. Low Temperature Behavior of Hyperfine Fields in Amorphous and Nanocrystalline FeMoCuB. J. Appl. Phys. 2015;117(17):1–17.

Gütlich Ph, Bill E, Trautwein AX. Mössbauer Spectroscopy and Transition Metal Chemistry. Berlin, Heidelberg, Germany: Springer-Verlag; 2011.

Stankov S, Sepiol B, Kaňuch T, Scherjau D, Würschum R, Miglierini M. High Temperature Mössbauer Effect Study of Fe90Zr7B3 Nanocrystalline Alloy. J. Phys.: Condens. Mat. 2005;17(21):3183–3196.

Smirnov GV. General properties of nuclear resonant scattering. Hyperfine Int. 1999;123(1-8):31–77.

Röhlsberger R. Nuclear Condensed Matter Physics with Synchrotron Radiation. Berlin, Heidelberg, Germany: Springer-Verlag; 2004.

Miglierini M, Procházka V, Stankov S, Švec P, Sr, Zajac M, Kohout J, Lančok A, Janičkovič D, Švec P. Crystallization kinetics of nanocrystalline alloys revealed by in-situ nuclear forward scattering of synchrotron radiation. Phys. Rev. B. 2012;86(2)

Miglierini M, Procházka V, Rüffer R, Zbořil R. In situ crystallization of metallic glasses during magnetic annealing. Acta Mater. 2015;91:50–56.

Procházka V, Vrba V, Smrčka D, Rüffer R, Matúš P, Mašláň M, Miglierini M. Structural transformation of NANOPERM-type metallic glasses followed in situ by synchrotron radiation during thermal annealing in external magnetic field. J. Alloy. Compounds. 2015;638:398–404.

Miglierini M, Pavlovič M, Procházka V, Hatala T, Schumacher G, Rüffer R. Evolution of structure and local magnetic fields during crystallization of HITPERM glassy alloys studied by in situ diffraction and nuclear forward scattering of synchrotron radiation. Phys. Chem. Chem. Phys. 2015;17(42):28239–28249. PubMed

Miglierini MB, Procházka V. Nanocrystallization of Metallic Glasses Followed by in situ Nuclear Forward Scattering of Synchrotron Radiation. In: Khodaei M, Petaccia L, editors. X-ray Characterization of Nanomaterials by Synchrotron Radiation. Rjeka, Croatia: InTech; 2017. pp. 7–29.

Miglierini M, Matúš P. Structural Modifications of Metallic Glasses Followed by Techniques of Nuclear Resonances. Pure Appl. Chem. 2017;89(4):405–417.

Žák T, Jirásková Y. CONFIT: Mössbauer spectra fitting program. Surf. Interf. Anal. 2006;38(4):710–714.

Rüffer R, Chumakov AI. Nuclear-resonance beamline at ESRF. Hyperfine Interact. 1996. pp. 589–604.

Sturhahn W, Gerdau E. Evaluation of time-differential measurements of nuclear-resonance scattering. of X-rays Phys. Rev. B. 1994;49(14):9285–9294. PubMed

Sturhahn W. CONUSS and PHOENIX: Evaluation of nuclear resonant scattering data. Hyperfine Interact. 2000;125(1-4):149–172.

Vrba V, Procházka V, Smrčka D, Miglierini M. Advanced Approach to the Analysis of a Series of in-situ Nuclear Forward Scattering Experiments. Nucl. Instr. Meth. Phys. Res. A. 2017;847:111–116.

Miglierini M, Grenèche J-M. Mössbauer Spectrometry of Fe(Cu)MB-Type Nanocrystalline Alloys: I. The Fitting Model for the Mössbauer Spectra. J. Phys.: Condens. Matter. 1997;9(10):2303–2319.

Mülhaupt G, Rüffer R. Properties of synchrotron radiation. Hyperfine Int. 1999;123(1-8):13–30.

Rüffer R. Nuclear resonance scattering. C. R. Physique. 2008;9(5-6):595–607.

Seto M. Condensed matter physics using nuclear resonant scattering. J. Phys. Soc. Jpn. 2013;82(2):021016.

Machala L, Procházka V, Miglierini M, Sharma VK, Marušák Z, Wille H-Ch, Zbořil R. Direct Evidence of Fe(V) and Fe(IV) Intermediates during Reduction of Fe(VI) to Fe(III): A Nuclear Forward Scattering of Synchrotron Radiation Approach. Phys. Chem. Chem. Phys. 2015;17(34):21787–21790. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...