Characterization and genomic analysis of highly efficient thermotolerant oil-degrading bacterium Gordonia sp. 1D
Language English Country United States Media print-electronic
Document type Journal Article
Grant support
18-34-00329 mol_a
Russian Foundation for Basic Research
PubMed
29951843
DOI
10.1007/s12223-018-0623-2
PII: 10.1007/s12223-018-0623-2
Knihovny.cz E-resources
- MeSH
- Genes, Bacterial MeSH
- Biodegradation, Environmental MeSH
- Phylogeny MeSH
- Genome, Bacterial genetics MeSH
- Gordonia Bacterium classification genetics metabolism physiology MeSH
- Multigene Family MeSH
- Soil Microbiology MeSH
- RNA, Ribosomal, 16S genetics MeSH
- Petroleum metabolism MeSH
- Sequence Analysis, DNA MeSH
- Substrate Specificity MeSH
- Thermotolerance * MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- RNA, Ribosomal, 16S MeSH
- Petroleum MeSH
A thermotolerant bacterial strain 1D isolated from refinery oil-contaminated soil was identified as Gordonia sp. based on the analysis of 16S rRNA and gyrB gene sequences. The strain was found to utilize crude oil, diesel fuel, and a wide spectrum of alkanes at temperatures up to 50 °C. Strain 1D is the first representative of Gordonia amicalis capable of utilizing alkanes of chain length up to С36 at a temperature of 45-50 °C. The degree of crude oil degradation by Gordonia sp. 1D at 45 °C was 38% in liquid medium and 40% in soil (with regard to abiotic loss). There are no examples of so effective hydrocarbon-oxidizing thermotolerant Gordonia in the world literature. The 1D genome analysis revealed the presence of two alkane hydroxylase gene clusters, genes of dibenzothiophene cleavage, and the cleavage of salicylate and gentisate - naphthalene metabolism intermediates. The highly efficient thermotolerant strain Gordonia sp. 1D can be used in remediation of oil-contaminated soils in hot climates.
See more in PubMed
Int J Syst Evol Microbiol. 2000 Nov;50 Pt 6:2031-6 PubMed
Res Microbiol. 2001 Sep;152(7):641-51 PubMed
Appl Environ Microbiol. 2004 Jun;70(6):3195-204 PubMed
Appl Microbiol Biotechnol. 2006 Jul;71(3):355-62 PubMed
Bioinformatics. 2007 Mar 15;23(6):673-9 PubMed
BMC Genomics. 2008 Feb 08;9:75 PubMed
Biotechnol Lett. 2008 Jul;30(7):1201-6 PubMed
Int J Syst Bacteriol. 1991 Apr;41(2):324-5 PubMed
Bioinformatics. 2009 Jan 1;25(1):119-20 PubMed
Syst Appl Microbiol. 2010 Mar;33(2):53-9 PubMed
Appl Environ Microbiol. 2011 Feb;77(4):1204-13 PubMed
Bioinformatics. 2012 Feb 15;28(4):464-9 PubMed
Microbiol Res. 2012 Jul 25;167(7):395-404 PubMed
J Comput Biol. 2012 May;19(5):455-77 PubMed
Mol Biol Evol. 2013 Dec;30(12):2725-9 PubMed
Bioinformatics. 2014 Jul 15;30(14):2068-9 PubMed
Bioinformatics. 2014 Aug 1;30(15):2114-20 PubMed
Prikl Biokhim Mikrobiol. 2016 Jul-Aug;52(4):383-91 PubMed
Appl Environ Microbiol. 1995 Mar;61(3):1104-9 PubMed