Ancient human parvovirus B19 in Eurasia reveals its long-term association with humans
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu historické články, časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
29967156
PubMed Central
PMC6055166
DOI
10.1073/pnas.1804921115
PII: 1804921115
Knihovny.cz E-zdroje
- Klíčová slova
- ancient DNA, paleo virology, parvovirus B19, virology, virus evolution,
- MeSH
- dějiny 19. století MeSH
- dějiny 20. století MeSH
- erythema infectiosum genetika dějiny MeSH
- fylogeneze * MeSH
- genom virový * MeSH
- genotyp * MeSH
- lidé MeSH
- lidský parvovirus B19 genetika MeSH
- molekulární evoluce * MeSH
- sekvenční analýza DNA * MeSH
- Check Tag
- dějiny 19. století MeSH
- dějiny 20. století MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- historické články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Human parvovirus B19 (B19V) is a ubiquitous human pathogen associated with a number of conditions, such as fifth disease in children and arthritis and arthralgias in adults. B19V is thought to evolve exceptionally rapidly among DNA viruses, with substitution rates previously estimated to be closer to those typical of RNA viruses. On the basis of genetic sequences up to ∼70 years of age, the most recent common ancestor of all B19V has been dated to the early 1800s, and it has been suggested that genotype 1, the most common B19V genotype, only started circulating in the 1960s. Here we present 10 genomes (63.9-99.7% genome coverage) of B19V from dental and skeletal remains of individuals who lived in Eurasia and Greenland from ∼0.5 to ∼6.9 thousand years ago (kya). In a phylogenetic analysis, five of the ancient B19V sequences fall within or basal to the modern genotype 1, and five fall basal to genotype 2, showing a long-term association of B19V with humans. The most recent common ancestor of all B19V is placed ∼12.6 kya, and we find a substitution rate that is an order of magnitude lower than inferred previously. Further, we are able to date the recombination event between genotypes 1 and 3 that formed genotype 2 to ∼5.0-6.8 kya. This study emphasizes the importance of ancient viral sequences for our understanding of virus evolution and phylogenetics.
Department of Anthropology University of Alberta Edmonton AB T6G 2H4 Canada
Department of Archaeology and Ancient History Uppsala University 621 67 Visby Sweden
Department of Forensic Medicine University of Copenhagen Teilum 2100 Copenhagen Denmark
Department of Historical Studies University of Gothenburg 412 61 Göteborg Sweden
Department of History Irkutsk State University 664003 Irkutsk Russia
Department of Viroscience Erasmus Medical Centre 3015 CN Rotterdam The Netherlands
Human Genetics Wellcome Trust Sanger Institute CB10 1SA Hinxton United Kingdom
Institute of History and Cultural Heritage National Academy of Sciences 720001 Bishkek Kyrgyzstan
Institute of Molecular Biology National Academy of Sciences 0014 Yerevan Armenia
Institute of Virology Charité Universitätsmedizin Berlin 10117 Berlin Germany
Museum and Institute of Zoology Polish Academy of Sciences 00 679 Warsaw Poland
School of GeoScience University of Edinburgh EH8 9XP Edinburgh United Kingdom
Thames Valley Archaeological Services RG1 5NR Reading United Kingdom
Zobrazit více v PubMed
Gallinella G. Parvovirus B19 achievements and challenges. ISRN Virol. 2013;2013:1–33.
Young NS, Brown KE. Parvovirus B19. N Engl J Med. 2004;350:586–597. PubMed
Ozawa K, Kurtzman G, Young N. Replication of the B19 parvovirus in human bone marrow cell cultures. Science. 1986;233:883–886. PubMed
Söderlund M, et al. Persistence of parvovirus B19 DNA in synovial membranes of young patients with and without chronic arthropathy. Lancet. 1997;349:1063–1065. PubMed
Pyöriä L, et al. Extinct type of human parvovirus B19 persists in tonsillar B cells. Nat Commun. 2017;8:14930. PubMed PMC
Schenk T, Enders M, Pollak S, Hahn R, Huzly D. High prevalence of human parvovirus B19 DNA in myocardial autopsy samples from subjects without myocarditis or dilative cardiomyopathy. J Clin Microbiol. 2009;47:106–110. PubMed PMC
Tanawattanacharoen S, Falk RJ, Jennette JC, Kopp JB. Parvovirus B19 DNA in kidney tissue of patients with focal segmental glomerulosclerosis. Am J Kidney Dis. 2000;35:1166–1174. PubMed
Gray A, et al. Persistence of parvovirus B19 DNA in testis of patients with testicular germ cell tumours. J Gen Virol. 1998;79:573–579. PubMed
Adamson LA, Fowler LJ, Ewald AS, Clare-Salzler MJ, Hobbs JA. Infection and persistence of erythrovirus B19 in benign and cancerous thyroid tissues. J Med Virol. 2014;86:1614–1620. PubMed
Norja P, et al. Bioportfolio: Lifelong persistence of variant and prototypic erythrovirus DNA genomes in human tissue. Proc Natl Acad Sci USA. 2006;103:7450–7453. PubMed PMC
Blümel J, et al. Parvovirus B19–Revised. Transfus Med Hemother. 2010;37:339–350. PubMed PMC
Brown KE, Simmonds P. Parvoviruses and blood transfusion. Transfusion. 2007;47:1745–1750. PubMed
Servant A, et al. Genetic diversity within human erythroviruses: Identification of three genotypes. J Virol. 2002;76:9124–9134. PubMed PMC
Parsyan A, Szmaragd C, Allain J-P, Candotti D. Identification and genetic diversity of two human parvovirus B19 genotype 3 subtypes. J Gen Virol. 2007;88:428–431. PubMed
Toan NL, et al. Phylogenetic analysis of human parvovirus B19, indicating two subgroups of genotype 1 in Vietnamese patients. J Gen Virol. 2006;87:2941–2949. PubMed
Ekman A, et al. Biological and immunological relations among human parvovirus B19 genotypes 1 to 3. J Virol. 2007;81:6927–6935. PubMed PMC
Hübschen JM, et al. Phylogenetic analysis of human parvovirus b19 sequences from eleven different countries confirms the predominance of genotype 1 and suggests the spread of genotype 3b. J Clin Microbiol. 2009;47:3735–3738. PubMed PMC
Norja P, Eis-Hübinger AM, Söderlund-Venermo M, Hedman K, Simmonds P. Rapid sequence change and geographical spread of human parvovirus B19: Comparison of B19 virus evolution in acute and persistent infections. J Virol. 2008;82:6427–6433. PubMed PMC
Shackelton LA, Holmes EC. Phylogenetic evidence for the rapid evolution of human B19 erythrovirus. J Virol. 2006;80:3666–3669. PubMed PMC
Toppinen M, et al. Bones hold the key to DNA virus history and epidemiology. Sci Rep. 2015;5:17226. PubMed PMC
Duffy S, Shackelton LA, Holmes EC. Rates of evolutionary change in viruses: Patterns and determinants. Nat Rev Genet. 2008;9:267–276. PubMed
Nielsen R, et al. Tracing the peopling of the world through genomics. Nature. 2017;541:302–310. PubMed PMC
Rasmussen S, et al. Early divergent strains of Yersinia pestis in Eurasia 5,000 years ago. Cell. 2015;163:571–582. PubMed PMC
Vågene ÅJ, et al. Salmonella enterica genomes from victims of a major sixteenth-century epidemic in Mexico. Nat Ecol Evol. 2018;2:520–528. PubMed
Mühlemann B, et al. Ancient hepatitis B viruses from the Bronze age to the Medieval period. Nature. 2018;557:418–423. PubMed
Duggan AT, et al. 17th century Variola virus reveals the recent history of Smallpox. Curr Biol. 2016;26:3407–3412. PubMed PMC
Heegaard ED, Brown KE. Human parvovirus B19. Clin Microbiol Rev. 2002;15:485–505. PubMed PMC
Orlando L, Gilbert MTP, Willerslev E. Reconstructing ancient genomes and epigenomes. Nat Rev Genet. 2015;16:395–408. PubMed
Willerslev E, Cooper A. Ancient DNA. Proc Biol Sci. 2005;272:3–16. PubMed PMC
Martin DP, Murrell B, Golden M, Khoosal A, Muhire B. RDP4: Detection and analysis of recombination patterns in virus genomes. Virus Evol. 2015;1:vev003. PubMed PMC
Shen H, Zhang W, Wang H, Shao S. Identification of recombination in the NS1 and VPs genes of parvovirus B19. J Med Virol. 2016;88:1457–1461. PubMed
Xia X. Assessing substitution saturation with DAMBE. In: Lemey P, Salemi M, Vandamme A-M, editors. The Phylogenetic Handbook: A Practical Approach to Phylogenetic Analysis and Hypothesis Testing. 2nd Ed. Cambridge Univ Press; Cambridge, UK: 2009. pp. 615–630.
Ramsden C, Holmes EC, Charleston MA. Hantavirus evolution in relation to its rodent and insectivore hosts: No evidence for codivergence. Mol Biol Evol. 2009;26:143–153. PubMed
Duchêne S, Duchêne D, Holmes EC, Ho SYW. The performance of the date-randomization test in phylogenetic analyses of time-structured virus data. Mol Biol Evol. 2015;32:1895–1906. PubMed
Bouckaert R, et al. BEAST 2: A software platform for Bayesian evolutionary analysis. PLoS Comput Biol. 2014;10:e1003537. PubMed PMC
Lindahl T. Instability and decay of the primary structure of DNA. Nature. 1993;362:709–715. PubMed
Chapman MS, Rossmann MG. Single-stranded DNA-protein interactions in canine parvovirus. Structure. 1995;3:151–162. PubMed
Katzourakis A, Gifford RJ. Endogenous viral elements in animal genomes. PLoS Genet. 2010;6:e1001191. PubMed PMC
Aiewsakun P, Katzourakis A. Time-dependent rate phenomenon in viruses. J Virol. 2016;90:7184–7195. PubMed PMC
Duchêne S, Holmes EC, Ho SYW. Analyses of evolutionary dynamics in viruses are hindered by a time-dependent bias in rate estimates. Proc Biol Sci. 2014;281:20140732. PubMed PMC
Ho SYW, et al. Time-dependent rates of molecular evolution. Mol Ecol. 2011;20:3087–3101. PubMed
United Nations Statistics Division 1998 Standard country or area codes for statistical use (M49): Geographic regions. Available at https://unstats.un.org/unsd/methodology/m49/. Accessed March 12, 2018.