Ancient human parvovirus B19 in Eurasia reveals its long-term association with humans

. 2018 Jul 17 ; 115 (29) : 7557-7562. [epub] 20180702

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu historické články, časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid29967156

Human parvovirus B19 (B19V) is a ubiquitous human pathogen associated with a number of conditions, such as fifth disease in children and arthritis and arthralgias in adults. B19V is thought to evolve exceptionally rapidly among DNA viruses, with substitution rates previously estimated to be closer to those typical of RNA viruses. On the basis of genetic sequences up to ∼70 years of age, the most recent common ancestor of all B19V has been dated to the early 1800s, and it has been suggested that genotype 1, the most common B19V genotype, only started circulating in the 1960s. Here we present 10 genomes (63.9-99.7% genome coverage) of B19V from dental and skeletal remains of individuals who lived in Eurasia and Greenland from ∼0.5 to ∼6.9 thousand years ago (kya). In a phylogenetic analysis, five of the ancient B19V sequences fall within or basal to the modern genotype 1, and five fall basal to genotype 2, showing a long-term association of B19V with humans. The most recent common ancestor of all B19V is placed ∼12.6 kya, and we find a substitution rate that is an order of magnitude lower than inferred previously. Further, we are able to date the recombination event between genotypes 1 and 3 that formed genotype 2 to ∼5.0-6.8 kya. This study emphasizes the importance of ancient viral sequences for our understanding of virus evolution and phylogenetics.

Cambridge GeoGenetics Group Department of Zoology University of Cambridge CB2 3EJ Cambridge United Kingdom

Center for Pathogen Evolution Department of Zoology University of Cambridge CB2 3EJ Cambridge United Kingdom

Center for Pathogen Evolution Department of Zoology University of Cambridge CB2 3EJ Cambridge United Kingdom;

Centre for GeoGenetics Natural History Museum of Denmark University of Copenhagen 1350 Copenhagen K Denmark

Centre for GeoGenetics Natural History Museum of Denmark University of Copenhagen 1350 Copenhagen K Denmark;

Department of Anthropology University of Alberta Edmonton AB T6G 2H4 Canada

Department of Archaeology and Ancient History Uppsala University 621 67 Visby Sweden

Department of Forensic Medicine University of Copenhagen Teilum 2100 Copenhagen Denmark

Department of Historical Studies University of Gothenburg 412 61 Göteborg Sweden

Department of History Irkutsk State University 664003 Irkutsk Russia

Department of Viroscience Erasmus Medical Centre 3015 CN Rotterdam The Netherlands

Human Genetics Wellcome Trust Sanger Institute CB10 1SA Hinxton United Kingdom

Institute for History of Medicine and Foreign Languages 1st Faculty of Medicine Charles University 121 08 Prague Czech Republic

Institute of History and Cultural Heritage National Academy of Sciences 720001 Bishkek Kyrgyzstan

Institute of Molecular Biology National Academy of Sciences 0014 Yerevan Armenia

Institute of Virology Charité Universitätsmedizin Berlin 10117 Berlin Germany

Laboratory of Theriology Zoological Institute of the Russian Academy of Sciences 199034 Saint Petersburg Russia

Museum and Institute of Zoology Polish Academy of Sciences 00 679 Warsaw Poland

School of GeoScience University of Edinburgh EH8 9XP Edinburgh United Kingdom

Thames Valley Archaeological Services RG1 5NR Reading United Kingdom

The National Museum of Denmark 1220 Copenhagen Denmark

Zobrazit více v PubMed

Gallinella G. Parvovirus B19 achievements and challenges. ISRN Virol. 2013;2013:1–33.

Young NS, Brown KE. Parvovirus B19. N Engl J Med. 2004;350:586–597. PubMed

Ozawa K, Kurtzman G, Young N. Replication of the B19 parvovirus in human bone marrow cell cultures. Science. 1986;233:883–886. PubMed

Söderlund M, et al. Persistence of parvovirus B19 DNA in synovial membranes of young patients with and without chronic arthropathy. Lancet. 1997;349:1063–1065. PubMed

Pyöriä L, et al. Extinct type of human parvovirus B19 persists in tonsillar B cells. Nat Commun. 2017;8:14930. PubMed PMC

Schenk T, Enders M, Pollak S, Hahn R, Huzly D. High prevalence of human parvovirus B19 DNA in myocardial autopsy samples from subjects without myocarditis or dilative cardiomyopathy. J Clin Microbiol. 2009;47:106–110. PubMed PMC

Tanawattanacharoen S, Falk RJ, Jennette JC, Kopp JB. Parvovirus B19 DNA in kidney tissue of patients with focal segmental glomerulosclerosis. Am J Kidney Dis. 2000;35:1166–1174. PubMed

Gray A, et al. Persistence of parvovirus B19 DNA in testis of patients with testicular germ cell tumours. J Gen Virol. 1998;79:573–579. PubMed

Adamson LA, Fowler LJ, Ewald AS, Clare-Salzler MJ, Hobbs JA. Infection and persistence of erythrovirus B19 in benign and cancerous thyroid tissues. J Med Virol. 2014;86:1614–1620. PubMed

Norja P, et al. Bioportfolio: Lifelong persistence of variant and prototypic erythrovirus DNA genomes in human tissue. Proc Natl Acad Sci USA. 2006;103:7450–7453. PubMed PMC

Blümel J, et al. Parvovirus B19–Revised. Transfus Med Hemother. 2010;37:339–350. PubMed PMC

Brown KE, Simmonds P. Parvoviruses and blood transfusion. Transfusion. 2007;47:1745–1750. PubMed

Servant A, et al. Genetic diversity within human erythroviruses: Identification of three genotypes. J Virol. 2002;76:9124–9134. PubMed PMC

Parsyan A, Szmaragd C, Allain J-P, Candotti D. Identification and genetic diversity of two human parvovirus B19 genotype 3 subtypes. J Gen Virol. 2007;88:428–431. PubMed

Toan NL, et al. Phylogenetic analysis of human parvovirus B19, indicating two subgroups of genotype 1 in Vietnamese patients. J Gen Virol. 2006;87:2941–2949. PubMed

Ekman A, et al. Biological and immunological relations among human parvovirus B19 genotypes 1 to 3. J Virol. 2007;81:6927–6935. PubMed PMC

Hübschen JM, et al. Phylogenetic analysis of human parvovirus b19 sequences from eleven different countries confirms the predominance of genotype 1 and suggests the spread of genotype 3b. J Clin Microbiol. 2009;47:3735–3738. PubMed PMC

Norja P, Eis-Hübinger AM, Söderlund-Venermo M, Hedman K, Simmonds P. Rapid sequence change and geographical spread of human parvovirus B19: Comparison of B19 virus evolution in acute and persistent infections. J Virol. 2008;82:6427–6433. PubMed PMC

Shackelton LA, Holmes EC. Phylogenetic evidence for the rapid evolution of human B19 erythrovirus. J Virol. 2006;80:3666–3669. PubMed PMC

Toppinen M, et al. Bones hold the key to DNA virus history and epidemiology. Sci Rep. 2015;5:17226. PubMed PMC

Duffy S, Shackelton LA, Holmes EC. Rates of evolutionary change in viruses: Patterns and determinants. Nat Rev Genet. 2008;9:267–276. PubMed

Nielsen R, et al. Tracing the peopling of the world through genomics. Nature. 2017;541:302–310. PubMed PMC

Rasmussen S, et al. Early divergent strains of Yersinia pestis in Eurasia 5,000 years ago. Cell. 2015;163:571–582. PubMed PMC

Vågene ÅJ, et al. Salmonella enterica genomes from victims of a major sixteenth-century epidemic in Mexico. Nat Ecol Evol. 2018;2:520–528. PubMed

Mühlemann B, et al. Ancient hepatitis B viruses from the Bronze age to the Medieval period. Nature. 2018;557:418–423. PubMed

Duggan AT, et al. 17th century Variola virus reveals the recent history of Smallpox. Curr Biol. 2016;26:3407–3412. PubMed PMC

Heegaard ED, Brown KE. Human parvovirus B19. Clin Microbiol Rev. 2002;15:485–505. PubMed PMC

Orlando L, Gilbert MTP, Willerslev E. Reconstructing ancient genomes and epigenomes. Nat Rev Genet. 2015;16:395–408. PubMed

Willerslev E, Cooper A. Ancient DNA. Proc Biol Sci. 2005;272:3–16. PubMed PMC

Martin DP, Murrell B, Golden M, Khoosal A, Muhire B. RDP4: Detection and analysis of recombination patterns in virus genomes. Virus Evol. 2015;1:vev003. PubMed PMC

Shen H, Zhang W, Wang H, Shao S. Identification of recombination in the NS1 and VPs genes of parvovirus B19. J Med Virol. 2016;88:1457–1461. PubMed

Xia X. Assessing substitution saturation with DAMBE. In: Lemey P, Salemi M, Vandamme A-M, editors. The Phylogenetic Handbook: A Practical Approach to Phylogenetic Analysis and Hypothesis Testing. 2nd Ed. Cambridge Univ Press; Cambridge, UK: 2009. pp. 615–630.

Ramsden C, Holmes EC, Charleston MA. Hantavirus evolution in relation to its rodent and insectivore hosts: No evidence for codivergence. Mol Biol Evol. 2009;26:143–153. PubMed

Duchêne S, Duchêne D, Holmes EC, Ho SYW. The performance of the date-randomization test in phylogenetic analyses of time-structured virus data. Mol Biol Evol. 2015;32:1895–1906. PubMed

Bouckaert R, et al. BEAST 2: A software platform for Bayesian evolutionary analysis. PLoS Comput Biol. 2014;10:e1003537. PubMed PMC

Lindahl T. Instability and decay of the primary structure of DNA. Nature. 1993;362:709–715. PubMed

Chapman MS, Rossmann MG. Single-stranded DNA-protein interactions in canine parvovirus. Structure. 1995;3:151–162. PubMed

Katzourakis A, Gifford RJ. Endogenous viral elements in animal genomes. PLoS Genet. 2010;6:e1001191. PubMed PMC

Aiewsakun P, Katzourakis A. Time-dependent rate phenomenon in viruses. J Virol. 2016;90:7184–7195. PubMed PMC

Duchêne S, Holmes EC, Ho SYW. Analyses of evolutionary dynamics in viruses are hindered by a time-dependent bias in rate estimates. Proc Biol Sci. 2014;281:20140732. PubMed PMC

Ho SYW, et al. Time-dependent rates of molecular evolution. Mol Ecol. 2011;20:3087–3101. PubMed

United Nations Statistics Division 1998 Standard country or area codes for statistical use (M49): Geographic regions. Available at https://unstats.un.org/unsd/methodology/m49/. Accessed March 12, 2018.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...