• This record comes from PubMed

Fine-scale genetic structure of the European bitterling at the intersection of three major European watersheds

. 2018 Jul 04 ; 18 (1) : 105. [epub] 20180704

Language English Country Great Britain, England Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Grant support
13-05872S Grantová Agentura České Republiky - International
P505/12/G112 Grantová Agentura České Republiky - International

Links

PubMed 29973160
PubMed Central PMC6030748
DOI 10.1186/s12862-018-1219-9
PII: 10.1186/s12862-018-1219-9
Knihovny.cz E-resources

BACKGROUND: Anthropogenic factors can have a major impact on the contemporary distribution of intraspecific genetic diversity. Many freshwater fishes have finely structured and locally adapted populations, but their natural genetic structure can be affected by river engineering schemes across river basins, fish transfers in aquaculture industry and conservation management. The European bitterling (Rhodeus amarus) is a small fish that is a brood parasite of freshwater mussels and is widespread across continental Europe. Its range recently expanded, following sharp declines in the 1970s and 1980s. We investigated its genetic variability and spatial structure at the centre of its distribution at the boundary of three watersheds, testing the role of natural and anthropogenic factors in its genetic structure. RESULTS: Sequences of mitochondrial cytochrome B (CYTB) revealed that bitterling colonised central Europe from two Ponto-Caspian refugia, which partly defines its contemporary genetic structure. Twelve polymorphic microsatellite loci revealed pronounced interpopulation differentiation, with significant small-scale differentiation within the same river basins. At a large scale, populations from the Baltic Sea watershed (middle Oder and Vistula basins) were distinct from those from the Black Sea watershed (Danube basin), while populations from rivers of the North Sea watershed (Rhine, Elbe) originated from the admixture of both original sources. Notable exceptions demonstrated the potential role of human translocations across watersheds, with the upper River Oder (Baltic watershed) inhabited by fish from the Danube basin (Black Sea watershed) and a population in the southern part of the River Elbe (North Sea watershed) basin possessing a signal of admixture from the Danube basin. CONCLUSIONS: Hydrography and physical barriers to dispersal are only partly reflected in the genetic structure of the European bitterling at the intersection of three major watersheds in central Europe. Drainage boundaries have been obscured by human-mediated translocations, likely related to common carp, Cyprinus carpio, cultivation and game-fish management. Despite these translocations, populations of bitterling are significantly structured by genetic drift, possibly reinforced by its low dispersal ability. Overall, the impact of anthropogenic factors on the genetic structure of the bitterling populations in central Europe is limited.

See more in PubMed

Taberlet P, Fumagalli L, Wust-Saucy AG, Cosson JF. Comparative phylogeography and postglacial colonization routes in Europe. Mol Ecol. 1998;7:453–464. doi: 10.1046/j.1365-294x.1998.00289.x. PubMed DOI

Durand JD, Persat H, Bouvet Y. Phylogeography and postglacial dispersion of the chub (Leuciscus cephalus) in Europe. Mol Ecol. 1999;8:989–997. doi: 10.1046/j.1365-294x.1999.00654.x. PubMed DOI

Jansson R, Dynesius M. The fate of clades in a world of recurrent climatic change: Milankovitch oscillations and evolution. Annu Rev Ecol Syst. 2002;33:741–777. doi: 10.1146/annurev.ecolsys.33.010802.150520. DOI

Hewitt GM. Genetic consequences of climatic oscillations in the quaternary. Philos Trans R Soc Lond Ser B Biol Sci. 2004;359:183–195. doi: 10.1098/rstb.2003.1388. PubMed DOI PMC

Bond G, Showers W, Cheseby M, Lotti R, Almasi P, deMenocal P, Priore P, Cullen H, Hajdas I, Bonani G. A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science. 1997;278:1257–1266. doi: 10.1126/science.278.5341.1257. DOI

Provan J, Bennett KD. Phylogeographic insights into cryptic glacial refugia. Trends Ecol Evol. 2008;23:564–571. doi: 10.1016/j.tree.2008.06.010. PubMed DOI

Hewitt GM. The genetic legacy of the quaternary ice ages. Nature. 2000;405:907–913. doi: 10.1038/35016000. PubMed DOI

Janko K, Kotusz J, De Gelas K, Šlechtová V, Opoldusová Z, Drozd P, et al. Dynamic formation of asexual diploid and polyploid lineages: multilocus analysis of Cobitis reveals the mechanisms maintaining the diversity of clones. PLoS One. 2012;7:e45384. doi: 10.1371/journal.pone.0045384. PubMed DOI PMC

Copilaş-Ciocianu D, Rutová T, Pařil P, Petrusek A. Epigean gammarids survived millions of years of severe climatic fluctuations in high latitude refugia throughout the western Carpathians. Mol Phylogenet Evol. 2017;112:218–229. doi: 10.1016/j.ympev.2017.04.027. PubMed DOI

Waters JM, Dijkstra LH, Wallis GP. Biogeography of the southern hemisphere freshwater fish, how important is marine dispersal? Mol Ecol. 2000;9:1815–1821. doi: 10.1046/j.1365-294x.2000.01082.x. PubMed DOI

McGlashan DJ, Hughes JM. Low levels of mitochondrial DNA and allozyme variation among populations of freshwater fish Hypseleotris compressa (Gobiidae: Eleotridinae): implications for its biology, populations connectivity and history. Heredity. 2001;86:222–233. doi: 10.1046/j.1365-2540.2001.00824.x. PubMed DOI

Ward RD, Woodwark M, Skibinski OF. A comparison of genetic diversity levels in marine, freshwater and anadromous fishes. J Fish Biol. 1994;44:213–232. doi: 10.1111/j.1095-8649.1994.tb01200.x. DOI

DeWoody JA, Avise JC. Microsatellite variation in marine, freshwater and anadromous fishes compared with other animals. J Fish Biol. 2000;56:461–473. doi: 10.1111/j.1095-8649.2000.tb00748.x. DOI

Chakona G, Swartz ER, Chakona A. Historical abiotic events or human-aided dispersal: inferring the evolutionary history of a newly discovered galaxiid fish. Ecol Evol. 2015;5:1369–1380. doi: 10.1002/ece3.1409. PubMed DOI PMC

Lever C. Naturalized fishes of the world. San Diego: Academic Press; 1996.

Rahel FJ. Biogeographic barriers, connectivity and homogenization of freshwater faunas: it’s a small world after all. Freshw Biol. 2007;52:696–710. doi: 10.1111/j.1365-2427.2006.01708.x. DOI

Morais P, Reichard M. Cryptic invasions: a review. Sci Total Environ. 2018;613:1438–1448. doi: 10.1016/j.scitotenv.2017.06.133. PubMed DOI

Mills EL, Chrisman JR, Holeck KT. The role of canals in the spread of nonindigenous species in North America. In: Claudi R, Leach JH, editors. Nonindigenous Freshwater Organisms: Vectors, Biology, and Impacts. Boca Raton: Lewis Publishers; 1999. pp. 347–379.

Truhlar AM, Aldridge DC. Differences in behavioural traits between two potentially invasive amphipods, Dikerogammarus villosus and Gammarus pulex. Biol Invasions. 2015;17:1569–1579. doi: 10.1007/s10530-014-0816-9. DOI

Litvak MK, Mandrak NE. Baitfish trade as a vector of aquatic introductions. In: Claudi R, Leach JH, editors. Nonindigenous Freshwater Organisms: Vectors, Biology, and Impacts. Boca Raton: Lewis Publishers; 1999. pp. 163–180.

Perry WL, Lodge DM, Feder JL. Importance of hybridization between indigenous and nonindigenous freshwater species: an overlooked threat to north American biodiversity. Syst Biol. 2002;51:255–275. doi: 10.1080/10635150252899761. PubMed DOI

Pringle CM. What is hydrologic connectivity and why is it ecologically important? Hydrol Process. 2003;17:2685–2689. doi: 10.1002/hyp.5145. DOI

Strayer DL. Twenty years of zebra mussels: lessons from the mollusk that made headlines. Front Ecol Environ. 2009;7:135–141. doi: 10.1890/080020. DOI

Schrimpf A, Theissinger K, Dahlem J, Maguire I, Pârvulescu L, Schulz HK, Schulz R. Phylogeography of noble crayfish (Astacus astacus) reveals multiple refugia. Freshw Biol. 2014;59:761–776. doi: 10.1111/fwb.12302. DOI

Kozhara AV, Zhulidov AV, Gollasch S, Przybylski M, Poznyak VG, Zhulidov DA, Gurtovaya TYU. Range extension and conservation status of the bitterling, Rhodeus sericeus amarus in Russia and adjacent countries. Folia Zool. 2007;56:97–108.

Van Damme D, Bogutskaya N, Hoffmann RC, Smith C. The introduction of the European bitterling (Rhodeus amarus) to west and Central Europe. Fish Fish (Oxf) 2007;8:79–106. doi: 10.1111/j.1467-2679.2007.00239.x. DOI

Bohlen J, Šlechtová V, Bogutskaya N, Freyhof J. Across Siberia and over Europe: phylogenetic relationships of the freshwater fish genus Rhodeus in Europe and the phylogenetic position of R. sericeus from the river Amur. Mol Phylogenet Evol. 2006;40:856–865. doi: 10.1016/j.ympev.2006.04.020. PubMed DOI

Zaki SAH, Jordan WC, Reichard M, Przybylski M, Smith C. A morphological and genetic analysis of the European bitterling species complex. Biol J Linn Soc Lond. 2008;95:337–347. doi: 10.1111/j.1095-8312.2008.01050.x. DOI

Bryja J, Smith C, Konečný A, Reichard M. Range-wide population genetic structure of the European bitterling (Rhodeus amarus) based on microsatellite and mitochondrial DNA analysis. Mol Ecol. 2010;19:4708–4722. doi: 10.1111/j.1365-294X.2010.04844.x. PubMed DOI

Reichard M, Jurajda P, Ondračková M. Interannual variability in seasonal dynamics and species composition of drifting young-of-the-year fishes in two European lowland rivers. J Fish Biol. 2002;60:87–101. doi: 10.1111/j.1095-8649.2002.tb02389.x. DOI

Kottelat M, Freyhof J. Handbook of European freshwater fishes. Cornol: Kottelat; and Berlin: Freyhof; 2007. p. 646.

Jurajda P. Comparative nursery habitat use by 0+ fish in a modified lowland river. Reg Rivers: Res & Mgmt. 1999;15:113–124. doi: 10.1002/(SICI)1099-1646(199901/06)15:1/3<113::AID-RRR529>3.0.CO;2-3. DOI

Wheeler A, Maintland PS. The scarcer freshwater fishes of the British isles. J Fish Biol. 1973;5:49–68. doi: 10.1111/j.1095-8649.1973.tb04430.x. DOI

Confortini I. Presenza del rodeo amaro, Rhodeus sericeus (Pallas, 1776) nel Fiume Menago (provincia di Verona) (Pisces, Cyprinidae) Bull Mus civ St nat Verona. 1992;16:329–332.

Møller PR, Menne T. Bitterling Rhodeus sericeus (Pallas, 1776) - first record from Denmark. Flora og Fauna. 1998;104:29–34.

Smith C, Reichard M, Jurajda P, Przybylski M. The reproductive ecology of the European bitterling (Rhodeus sericeus) J Zool. 2004;262:107–124. doi: 10.1017/S0952836903004497. DOI

Lelek A. Threatened freshwater fishes of Europe. Council of Europe: Strasbourg; 1980.

Grosswald MG. Late weichselian ice sheet of northern Eurasia. Quat Res. 1980;13:1–32. doi: 10.1016/0033-5894(80)90080-0. DOI

Ryan WBF, Pitman WC, III, Major CO, Shimkus K, Moskalenko V, Jones GA, et al. An abrupt drowning of the Black Sea shelf. Mar Geol. 1997;138:119–126. doi: 10.1016/S0025-3227(97)00007-8. DOI

Bogutskaya NG, Komlev AM. Some new data on the morphology of Rhodeus sericeus sensu lato (Cyprinidae:Acheilognathinae) and a description of a new species, Rhodeus colchicus, from west Transcaucasia. Proc Zool Inst. 2001;287:81–97.

Bektaş Y, Beldüz AO, Turan D. The phylogenetic position of Turkish populations within the European bitterling, Rhodeus amarus (Osteichthyes: Cyprinidae) Zool Middle East. 2013;59:39–50. doi: 10.1080/09397140.2013.795063. DOI

Dawson DA, Burland TM, Douglas A, Le Comber SC, Bradshaw M. Isolation of microsatellite loci in the freshwater fish, the bitterling Rhodeus sericeus (Teleostei: Cyprinidae) Mol Ecol Notes. 2003;3:199–202. doi: 10.1046/j.1471-8286.2003.00395.x. DOI

Reichard M, Smith C, Bryja J. Seasonal change in the opportunity for sexual selection. Mol Ecol. 2008;17:642–651. doi: 10.1111/j.1365-294X.2007.03602.x. PubMed DOI

Raymond M, Rousset F. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered. 1995;86:248–249. doi: 10.1093/oxfordjournals.jhered.a111573. DOI

Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F. Laboratoire Génome, Populations, Interactions, CNRS UMR. 1996. GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations; p. 5000.

Goudet J. FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Available at https://www.unil.ch/dee/en/home/menuinst/open-position-and-public-resources/softwares--dataset/softwares/fstat.html.

Chapuis MP, Estoup A. Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol. 2007;24:621–631. doi: 10.1093/molbev/msl191. PubMed DOI

Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes. 2004;4:535–538. doi: 10.1111/j.1471-8286.2004.00684.x. DOI

Weir BS, Cockerham CC. Estimating F-statistics for the analysis of population structure. Evolution. 1984;38:1358–1370. PubMed

Falush D, Stephens M, Pritchard JK. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics. 2003;164:1567–1587. PubMed PMC

Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol. 2005;14:2611–2620. doi: 10.1111/j.1365-294X.2005.02553.x. PubMed DOI

Jakobsson M, Rosenberg NA. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics. 2007;23:1801–1806. doi: 10.1093/bioinformatics/btm233. PubMed DOI

Rosenberg NA. Distruct: a program for the graphical display of population structure. Mol Ecol Notes. 2004;4:137–138. doi: 10.1046/j.1471-8286.2003.00566.x. DOI

Bandelt HJ, Forster P, Röhl A. Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol. 1999;16:37–48. doi: 10.1093/oxfordjournals.molbev.a026036. PubMed DOI

Rousset F. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics. 1997;145:1219–1228. PubMed PMC

Excoffier L, Smouse PE, Quattro JM. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics. 1992;131:479–491. PubMed PMC

Excoffier L, Laval G, Schneider S. Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinformatics Online. 2005;1:47–50. PubMed PMC

Hardy OJ, Vekemans X. SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes. 2002;2:618–620. doi: 10.1046/j.1471-8286.2002.00305.x. DOI

Hardy OJ, Charbonnel N, Freville H, Hauertz M. Microsatellite allele sizes: a simple test to assess their significance on genetic differentiation. Genetics. 2003;163:1467–1482. PubMed PMC

Beaumont MA, Zhang W, Balding DJ. Approximate Bayesian computation in population genetics. Genetics. 2002;162:2025–2035. PubMed PMC

Cornuet JM, Pudlo P, Veyssier J, Dehne-Garcia A, Gautier M, Leblois R, et al. DIYABCv2.0: a software to make approximate Bayesian computation inferences about population history using single nucleotide polymorphism, DNA sequence and microsatellite data. Bioinformatics. 2014;30:1187–1189. doi: 10.1093/bioinformatics/btt763. PubMed DOI

Estoup A, Wilson IJ, Sullivan C, Cornuet JM, Moritz C. Inferring population history from microsatellite and enzyme data in serially introduced cane toads. Genetics. 2001;159:1671–1687. PubMed PMC

Konečná M, Reichard M. Seasonal dynamics in population characteristics of European bitterling Rhodeus amarus in a small lowland river. J Fish Biol. 2011;78:227–239. doi: 10.1111/j.1095-8649.2010.02854.x. PubMed DOI

Cornuet JM, Santos F, Beaumont MA, Robert CP, Marin JM, Balding DJ, et al. Inferring population history with DIY ABC: a user-friendly approach to approximate Bayesian computation. Bioinformatics. 2008;24:2713–2719. doi: 10.1093/bioinformatics/btn514. PubMed DOI PMC

Libertini A, Sola L, Rampin M, Rossi AR, Iijima K, Ueda T. Classical and molecular cytogenetic characterization of allochthonous European bitterling Rhodeus amarus (Cyprinidae, Acheilognathinae) from northern Italy. Genes Genet Syst. 2008;83:417–422. doi: 10.1266/ggs.83.417. PubMed DOI

Janes JK, Miller JM, Dupuis JR, Malenfant RM, Gorrell JC, Cullingham CI, Andrew RL. The K = 2 conundrum. Mol Ecol. 2017;00:1–9. PubMed

Kotlík P, Berrebi P. Phylogeography of the barbel (Barbus barbus) assessed by mitochondrial DNA variation. Mol Ecol. 2001;10:2177–2185. doi: 10.1046/j.0962-1083.2001.01344.x. PubMed DOI

Salzburger W, Brandstätter A, Gilles A, Parson W, Hempel M, Sturmbauer C, Meyer A. Phylogeography of the vairone (Leuciscus souffia, Risso 1826) in Central Europe. Mol Ecol. 2003;12:2371–2386. doi: 10.1046/j.1365-294X.2003.01911.x. PubMed DOI

Hänfling B, Dümpelmann C, Bogutskaya NG, Brandl R, Brändle M. Shallow phylogeographic structuring of Vimba vimba across Europe suggests two distinct refugia during the last glaciation. J Fish Biol. 2009;75:2269–2286. doi: 10.1111/j.1095-8649.2009.02415.x. PubMed DOI

Eckert CG, Samis KE, Lougheed SC. Genetic variation across species’ geographical ranges: the central–marginal hypothesis and beyond. Mol Ecol. 2008;17:1170–1188. doi: 10.1111/j.1365-294X.2007.03659.x. PubMed DOI

Schmidt RE, McGurk J. Biology of the European bitterling Rhodeus sericeus (Pisces: Cyprinidae) in the Bronx River, New York, USA: an apparently benign exotic species. Biol Conserv. 1982;24:157–162. doi: 10.1016/0006-3207(82)90066-0. DOI

Šlechtová V, Bohlen J, Freyhof J, Persat H, Delmastro GB. The alps as barrier to dispersal in cold-adapted freshwater fishes? Phylogeographic history and taxonomic status of the bullhead in the Adriatic freshwater drainage. Mol Phylogenet Evol. 2004;33:225–239. doi: 10.1016/j.ympev.2004.05.005. PubMed DOI

Janko K, Culling MA, Ráb P, Kotlík P. Ice age cloning – comparison of the quaternary evolutionary histories of sexual and clonal forms of spiny loaches (Cobitis; Teleostei) using the analysis of mitochondrial DNA variation. Mol Ecol. 2005;14:2991–3004. doi: 10.1111/j.1365-294X.2005.02583.x. PubMed DOI

Slavík O, Bartoš L. What are the reasons for the Prussian carp expansion in the upper Elbe River, Czech Republic? J Fish Biol. 2004;65:240–253. doi: 10.1111/j.0022-1112.2004.00560.x. DOI

Roche K, Janáč M, Šlapanský L, Mikl L, Kopeček L, Jurajda P. A newly established round goby (Neogobius melanostomus) population in the upper stretch of the river Elbe. Knowl Manag Aquat Ecosyst. 2015;416:1–11.

Reyjol Y, Hugueny B, Pont D, Bianco PG, Beier U, Caiola N, et al. Patterns in species richness and endemism of European freshwater fish. Glob Ecol Biogeogr. 2007;16:65–75. doi: 10.1111/j.1466-8238.2006.00264.x. DOI

Reichard M, Jurajda P, Václavík R. Drift of larval and juvenile fishes: a comparison between small and large lowland rivers. Arch Hydrobiol Suppl. 2001;135:373–389.

Jurajda P, Hohausova E, Gelnar M. Seasonal dynamics of fish abundance below a migration barrier in the lower regulated river Morava. Folia Zool. 1998;47:215–223.

Gum B, Gross R, Kuehn R. Mitochondrial and nuclear DNA phylogeography of European grayling (Thymallus thymallus): evidence for secondary contact zones in Central Europe. Mol Ecol. 2005;14:1707–1725. doi: 10.1111/j.1365-294X.2005.02520.x. PubMed DOI

Seifertová M, Bryja J, Vyskočilová M, Martínková N, Šimková A. Multiple Pleistocene refugia and post-glacial colonization in the European chub (Squalius cephalus) revealed by combined use of nuclear and mitochondrial markers. J Biogeogr. 2012;39:1024–1040. doi: 10.1111/j.1365-2699.2011.02661.x. DOI

Lopes-Cunha M, Aboim MA, Mesquita N, Alves MJ, Doadrio I, Coelho MM. Population genetic structure in the Iberian cyprinid fish Iberochondrostoma lemmingii (Steindachner, 1866): disentangling species fragmentation and colonization processes. Biol J Linn Soc Lond. 2012;105:559–572. doi: 10.1111/j.1095-8312.2011.01827.x. DOI

Douda K, Lopes-Lima M, Hinzmann M, Machado J, Varandas S, Teixeira A, Sousa R. Biotic homogenization as a threat to native affiliate species: fish introductions dilute freshwater mussel's host resources. Divers Distrib. 2013;19:933–942. doi: 10.1111/ddi.12044. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...