Fine-scale genetic structure of the European bitterling at the intersection of three major European watersheds
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
13-05872S
Grantová Agentura České Republiky - International
P505/12/G112
Grantová Agentura České Republiky - International
PubMed
29973160
PubMed Central
PMC6030748
DOI
10.1186/s12862-018-1219-9
PII: 10.1186/s12862-018-1219-9
Knihovny.cz E-resources
- Keywords
- Cryptic invasions, Freshwater conservation, Game fish stocking, Gene flow, Human-mediated translocation, Phylogeography, Population genetics,
- MeSH
- Bayes Theorem MeSH
- Species Specificity MeSH
- Gene Frequency genetics MeSH
- Genetic Variation MeSH
- Carps genetics MeSH
- Humans MeSH
- Microsatellite Repeats genetics MeSH
- DNA, Mitochondrial genetics MeSH
- Mitochondria genetics MeSH
- Genetics, Population MeSH
- Rivers * MeSH
- Fresh Water MeSH
- Geography MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Europe MeSH
- North Sea MeSH
- Names of Substances
- DNA, Mitochondrial MeSH
BACKGROUND: Anthropogenic factors can have a major impact on the contemporary distribution of intraspecific genetic diversity. Many freshwater fishes have finely structured and locally adapted populations, but their natural genetic structure can be affected by river engineering schemes across river basins, fish transfers in aquaculture industry and conservation management. The European bitterling (Rhodeus amarus) is a small fish that is a brood parasite of freshwater mussels and is widespread across continental Europe. Its range recently expanded, following sharp declines in the 1970s and 1980s. We investigated its genetic variability and spatial structure at the centre of its distribution at the boundary of three watersheds, testing the role of natural and anthropogenic factors in its genetic structure. RESULTS: Sequences of mitochondrial cytochrome B (CYTB) revealed that bitterling colonised central Europe from two Ponto-Caspian refugia, which partly defines its contemporary genetic structure. Twelve polymorphic microsatellite loci revealed pronounced interpopulation differentiation, with significant small-scale differentiation within the same river basins. At a large scale, populations from the Baltic Sea watershed (middle Oder and Vistula basins) were distinct from those from the Black Sea watershed (Danube basin), while populations from rivers of the North Sea watershed (Rhine, Elbe) originated from the admixture of both original sources. Notable exceptions demonstrated the potential role of human translocations across watersheds, with the upper River Oder (Baltic watershed) inhabited by fish from the Danube basin (Black Sea watershed) and a population in the southern part of the River Elbe (North Sea watershed) basin possessing a signal of admixture from the Danube basin. CONCLUSIONS: Hydrography and physical barriers to dispersal are only partly reflected in the genetic structure of the European bitterling at the intersection of three major watersheds in central Europe. Drainage boundaries have been obscured by human-mediated translocations, likely related to common carp, Cyprinus carpio, cultivation and game-fish management. Despite these translocations, populations of bitterling are significantly structured by genetic drift, possibly reinforced by its low dispersal ability. Overall, the impact of anthropogenic factors on the genetic structure of the bitterling populations in central Europe is limited.
See more in PubMed
Taberlet P, Fumagalli L, Wust-Saucy AG, Cosson JF. Comparative phylogeography and postglacial colonization routes in Europe. Mol Ecol. 1998;7:453–464. doi: 10.1046/j.1365-294x.1998.00289.x. PubMed DOI
Durand JD, Persat H, Bouvet Y. Phylogeography and postglacial dispersion of the chub (Leuciscus cephalus) in Europe. Mol Ecol. 1999;8:989–997. doi: 10.1046/j.1365-294x.1999.00654.x. PubMed DOI
Jansson R, Dynesius M. The fate of clades in a world of recurrent climatic change: Milankovitch oscillations and evolution. Annu Rev Ecol Syst. 2002;33:741–777. doi: 10.1146/annurev.ecolsys.33.010802.150520. DOI
Hewitt GM. Genetic consequences of climatic oscillations in the quaternary. Philos Trans R Soc Lond Ser B Biol Sci. 2004;359:183–195. doi: 10.1098/rstb.2003.1388. PubMed DOI PMC
Bond G, Showers W, Cheseby M, Lotti R, Almasi P, deMenocal P, Priore P, Cullen H, Hajdas I, Bonani G. A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science. 1997;278:1257–1266. doi: 10.1126/science.278.5341.1257. DOI
Provan J, Bennett KD. Phylogeographic insights into cryptic glacial refugia. Trends Ecol Evol. 2008;23:564–571. doi: 10.1016/j.tree.2008.06.010. PubMed DOI
Hewitt GM. The genetic legacy of the quaternary ice ages. Nature. 2000;405:907–913. doi: 10.1038/35016000. PubMed DOI
Janko K, Kotusz J, De Gelas K, Šlechtová V, Opoldusová Z, Drozd P, et al. Dynamic formation of asexual diploid and polyploid lineages: multilocus analysis of Cobitis reveals the mechanisms maintaining the diversity of clones. PLoS One. 2012;7:e45384. doi: 10.1371/journal.pone.0045384. PubMed DOI PMC
Copilaş-Ciocianu D, Rutová T, Pařil P, Petrusek A. Epigean gammarids survived millions of years of severe climatic fluctuations in high latitude refugia throughout the western Carpathians. Mol Phylogenet Evol. 2017;112:218–229. doi: 10.1016/j.ympev.2017.04.027. PubMed DOI
Waters JM, Dijkstra LH, Wallis GP. Biogeography of the southern hemisphere freshwater fish, how important is marine dispersal? Mol Ecol. 2000;9:1815–1821. doi: 10.1046/j.1365-294x.2000.01082.x. PubMed DOI
McGlashan DJ, Hughes JM. Low levels of mitochondrial DNA and allozyme variation among populations of freshwater fish Hypseleotris compressa (Gobiidae: Eleotridinae): implications for its biology, populations connectivity and history. Heredity. 2001;86:222–233. doi: 10.1046/j.1365-2540.2001.00824.x. PubMed DOI
Ward RD, Woodwark M, Skibinski OF. A comparison of genetic diversity levels in marine, freshwater and anadromous fishes. J Fish Biol. 1994;44:213–232. doi: 10.1111/j.1095-8649.1994.tb01200.x. DOI
DeWoody JA, Avise JC. Microsatellite variation in marine, freshwater and anadromous fishes compared with other animals. J Fish Biol. 2000;56:461–473. doi: 10.1111/j.1095-8649.2000.tb00748.x. DOI
Chakona G, Swartz ER, Chakona A. Historical abiotic events or human-aided dispersal: inferring the evolutionary history of a newly discovered galaxiid fish. Ecol Evol. 2015;5:1369–1380. doi: 10.1002/ece3.1409. PubMed DOI PMC
Lever C. Naturalized fishes of the world. San Diego: Academic Press; 1996.
Rahel FJ. Biogeographic barriers, connectivity and homogenization of freshwater faunas: it’s a small world after all. Freshw Biol. 2007;52:696–710. doi: 10.1111/j.1365-2427.2006.01708.x. DOI
Morais P, Reichard M. Cryptic invasions: a review. Sci Total Environ. 2018;613:1438–1448. doi: 10.1016/j.scitotenv.2017.06.133. PubMed DOI
Mills EL, Chrisman JR, Holeck KT. The role of canals in the spread of nonindigenous species in North America. In: Claudi R, Leach JH, editors. Nonindigenous Freshwater Organisms: Vectors, Biology, and Impacts. Boca Raton: Lewis Publishers; 1999. pp. 347–379.
Truhlar AM, Aldridge DC. Differences in behavioural traits between two potentially invasive amphipods, Dikerogammarus villosus and Gammarus pulex. Biol Invasions. 2015;17:1569–1579. doi: 10.1007/s10530-014-0816-9. DOI
Litvak MK, Mandrak NE. Baitfish trade as a vector of aquatic introductions. In: Claudi R, Leach JH, editors. Nonindigenous Freshwater Organisms: Vectors, Biology, and Impacts. Boca Raton: Lewis Publishers; 1999. pp. 163–180.
Perry WL, Lodge DM, Feder JL. Importance of hybridization between indigenous and nonindigenous freshwater species: an overlooked threat to north American biodiversity. Syst Biol. 2002;51:255–275. doi: 10.1080/10635150252899761. PubMed DOI
Pringle CM. What is hydrologic connectivity and why is it ecologically important? Hydrol Process. 2003;17:2685–2689. doi: 10.1002/hyp.5145. DOI
Strayer DL. Twenty years of zebra mussels: lessons from the mollusk that made headlines. Front Ecol Environ. 2009;7:135–141. doi: 10.1890/080020. DOI
Schrimpf A, Theissinger K, Dahlem J, Maguire I, Pârvulescu L, Schulz HK, Schulz R. Phylogeography of noble crayfish (Astacus astacus) reveals multiple refugia. Freshw Biol. 2014;59:761–776. doi: 10.1111/fwb.12302. DOI
Kozhara AV, Zhulidov AV, Gollasch S, Przybylski M, Poznyak VG, Zhulidov DA, Gurtovaya TYU. Range extension and conservation status of the bitterling, Rhodeus sericeus amarus in Russia and adjacent countries. Folia Zool. 2007;56:97–108.
Van Damme D, Bogutskaya N, Hoffmann RC, Smith C. The introduction of the European bitterling (Rhodeus amarus) to west and Central Europe. Fish Fish (Oxf) 2007;8:79–106. doi: 10.1111/j.1467-2679.2007.00239.x. DOI
Bohlen J, Šlechtová V, Bogutskaya N, Freyhof J. Across Siberia and over Europe: phylogenetic relationships of the freshwater fish genus Rhodeus in Europe and the phylogenetic position of R. sericeus from the river Amur. Mol Phylogenet Evol. 2006;40:856–865. doi: 10.1016/j.ympev.2006.04.020. PubMed DOI
Zaki SAH, Jordan WC, Reichard M, Przybylski M, Smith C. A morphological and genetic analysis of the European bitterling species complex. Biol J Linn Soc Lond. 2008;95:337–347. doi: 10.1111/j.1095-8312.2008.01050.x. DOI
Bryja J, Smith C, Konečný A, Reichard M. Range-wide population genetic structure of the European bitterling (Rhodeus amarus) based on microsatellite and mitochondrial DNA analysis. Mol Ecol. 2010;19:4708–4722. doi: 10.1111/j.1365-294X.2010.04844.x. PubMed DOI
Reichard M, Jurajda P, Ondračková M. Interannual variability in seasonal dynamics and species composition of drifting young-of-the-year fishes in two European lowland rivers. J Fish Biol. 2002;60:87–101. doi: 10.1111/j.1095-8649.2002.tb02389.x. DOI
Kottelat M, Freyhof J. Handbook of European freshwater fishes. Cornol: Kottelat; and Berlin: Freyhof; 2007. p. 646.
Jurajda P. Comparative nursery habitat use by 0+ fish in a modified lowland river. Reg Rivers: Res & Mgmt. 1999;15:113–124. doi: 10.1002/(SICI)1099-1646(199901/06)15:1/3<113::AID-RRR529>3.0.CO;2-3. DOI
Wheeler A, Maintland PS. The scarcer freshwater fishes of the British isles. J Fish Biol. 1973;5:49–68. doi: 10.1111/j.1095-8649.1973.tb04430.x. DOI
Confortini I. Presenza del rodeo amaro, Rhodeus sericeus (Pallas, 1776) nel Fiume Menago (provincia di Verona) (Pisces, Cyprinidae) Bull Mus civ St nat Verona. 1992;16:329–332.
Møller PR, Menne T. Bitterling Rhodeus sericeus (Pallas, 1776) - first record from Denmark. Flora og Fauna. 1998;104:29–34.
Smith C, Reichard M, Jurajda P, Przybylski M. The reproductive ecology of the European bitterling (Rhodeus sericeus) J Zool. 2004;262:107–124. doi: 10.1017/S0952836903004497. DOI
Lelek A. Threatened freshwater fishes of Europe. Council of Europe: Strasbourg; 1980.
Grosswald MG. Late weichselian ice sheet of northern Eurasia. Quat Res. 1980;13:1–32. doi: 10.1016/0033-5894(80)90080-0. DOI
Ryan WBF, Pitman WC, III, Major CO, Shimkus K, Moskalenko V, Jones GA, et al. An abrupt drowning of the Black Sea shelf. Mar Geol. 1997;138:119–126. doi: 10.1016/S0025-3227(97)00007-8. DOI
Bogutskaya NG, Komlev AM. Some new data on the morphology of Rhodeus sericeus sensu lato (Cyprinidae:Acheilognathinae) and a description of a new species, Rhodeus colchicus, from west Transcaucasia. Proc Zool Inst. 2001;287:81–97.
Bektaş Y, Beldüz AO, Turan D. The phylogenetic position of Turkish populations within the European bitterling, Rhodeus amarus (Osteichthyes: Cyprinidae) Zool Middle East. 2013;59:39–50. doi: 10.1080/09397140.2013.795063. DOI
Dawson DA, Burland TM, Douglas A, Le Comber SC, Bradshaw M. Isolation of microsatellite loci in the freshwater fish, the bitterling Rhodeus sericeus (Teleostei: Cyprinidae) Mol Ecol Notes. 2003;3:199–202. doi: 10.1046/j.1471-8286.2003.00395.x. DOI
Reichard M, Smith C, Bryja J. Seasonal change in the opportunity for sexual selection. Mol Ecol. 2008;17:642–651. doi: 10.1111/j.1365-294X.2007.03602.x. PubMed DOI
Raymond M, Rousset F. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered. 1995;86:248–249. doi: 10.1093/oxfordjournals.jhered.a111573. DOI
Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F. Laboratoire Génome, Populations, Interactions, CNRS UMR. 1996. GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations; p. 5000.
Goudet J. FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Available at https://www.unil.ch/dee/en/home/menuinst/open-position-and-public-resources/softwares--dataset/softwares/fstat.html.
Chapuis MP, Estoup A. Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol. 2007;24:621–631. doi: 10.1093/molbev/msl191. PubMed DOI
Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes. 2004;4:535–538. doi: 10.1111/j.1471-8286.2004.00684.x. DOI
Weir BS, Cockerham CC. Estimating F-statistics for the analysis of population structure. Evolution. 1984;38:1358–1370. PubMed
Falush D, Stephens M, Pritchard JK. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics. 2003;164:1567–1587. PubMed PMC
Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol. 2005;14:2611–2620. doi: 10.1111/j.1365-294X.2005.02553.x. PubMed DOI
Jakobsson M, Rosenberg NA. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics. 2007;23:1801–1806. doi: 10.1093/bioinformatics/btm233. PubMed DOI
Rosenberg NA. Distruct: a program for the graphical display of population structure. Mol Ecol Notes. 2004;4:137–138. doi: 10.1046/j.1471-8286.2003.00566.x. DOI
Bandelt HJ, Forster P, Röhl A. Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol. 1999;16:37–48. doi: 10.1093/oxfordjournals.molbev.a026036. PubMed DOI
Rousset F. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics. 1997;145:1219–1228. PubMed PMC
Excoffier L, Smouse PE, Quattro JM. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics. 1992;131:479–491. PubMed PMC
Excoffier L, Laval G, Schneider S. Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinformatics Online. 2005;1:47–50. PubMed PMC
Hardy OJ, Vekemans X. SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes. 2002;2:618–620. doi: 10.1046/j.1471-8286.2002.00305.x. DOI
Hardy OJ, Charbonnel N, Freville H, Hauertz M. Microsatellite allele sizes: a simple test to assess their significance on genetic differentiation. Genetics. 2003;163:1467–1482. PubMed PMC
Beaumont MA, Zhang W, Balding DJ. Approximate Bayesian computation in population genetics. Genetics. 2002;162:2025–2035. PubMed PMC
Cornuet JM, Pudlo P, Veyssier J, Dehne-Garcia A, Gautier M, Leblois R, et al. DIYABCv2.0: a software to make approximate Bayesian computation inferences about population history using single nucleotide polymorphism, DNA sequence and microsatellite data. Bioinformatics. 2014;30:1187–1189. doi: 10.1093/bioinformatics/btt763. PubMed DOI
Estoup A, Wilson IJ, Sullivan C, Cornuet JM, Moritz C. Inferring population history from microsatellite and enzyme data in serially introduced cane toads. Genetics. 2001;159:1671–1687. PubMed PMC
Konečná M, Reichard M. Seasonal dynamics in population characteristics of European bitterling Rhodeus amarus in a small lowland river. J Fish Biol. 2011;78:227–239. doi: 10.1111/j.1095-8649.2010.02854.x. PubMed DOI
Cornuet JM, Santos F, Beaumont MA, Robert CP, Marin JM, Balding DJ, et al. Inferring population history with DIY ABC: a user-friendly approach to approximate Bayesian computation. Bioinformatics. 2008;24:2713–2719. doi: 10.1093/bioinformatics/btn514. PubMed DOI PMC
Libertini A, Sola L, Rampin M, Rossi AR, Iijima K, Ueda T. Classical and molecular cytogenetic characterization of allochthonous European bitterling Rhodeus amarus (Cyprinidae, Acheilognathinae) from northern Italy. Genes Genet Syst. 2008;83:417–422. doi: 10.1266/ggs.83.417. PubMed DOI
Janes JK, Miller JM, Dupuis JR, Malenfant RM, Gorrell JC, Cullingham CI, Andrew RL. The K = 2 conundrum. Mol Ecol. 2017;00:1–9. PubMed
Kotlík P, Berrebi P. Phylogeography of the barbel (Barbus barbus) assessed by mitochondrial DNA variation. Mol Ecol. 2001;10:2177–2185. doi: 10.1046/j.0962-1083.2001.01344.x. PubMed DOI
Salzburger W, Brandstätter A, Gilles A, Parson W, Hempel M, Sturmbauer C, Meyer A. Phylogeography of the vairone (Leuciscus souffia, Risso 1826) in Central Europe. Mol Ecol. 2003;12:2371–2386. doi: 10.1046/j.1365-294X.2003.01911.x. PubMed DOI
Hänfling B, Dümpelmann C, Bogutskaya NG, Brandl R, Brändle M. Shallow phylogeographic structuring of Vimba vimba across Europe suggests two distinct refugia during the last glaciation. J Fish Biol. 2009;75:2269–2286. doi: 10.1111/j.1095-8649.2009.02415.x. PubMed DOI
Eckert CG, Samis KE, Lougheed SC. Genetic variation across species’ geographical ranges: the central–marginal hypothesis and beyond. Mol Ecol. 2008;17:1170–1188. doi: 10.1111/j.1365-294X.2007.03659.x. PubMed DOI
Schmidt RE, McGurk J. Biology of the European bitterling Rhodeus sericeus (Pisces: Cyprinidae) in the Bronx River, New York, USA: an apparently benign exotic species. Biol Conserv. 1982;24:157–162. doi: 10.1016/0006-3207(82)90066-0. DOI
Šlechtová V, Bohlen J, Freyhof J, Persat H, Delmastro GB. The alps as barrier to dispersal in cold-adapted freshwater fishes? Phylogeographic history and taxonomic status of the bullhead in the Adriatic freshwater drainage. Mol Phylogenet Evol. 2004;33:225–239. doi: 10.1016/j.ympev.2004.05.005. PubMed DOI
Janko K, Culling MA, Ráb P, Kotlík P. Ice age cloning – comparison of the quaternary evolutionary histories of sexual and clonal forms of spiny loaches (Cobitis; Teleostei) using the analysis of mitochondrial DNA variation. Mol Ecol. 2005;14:2991–3004. doi: 10.1111/j.1365-294X.2005.02583.x. PubMed DOI
Slavík O, Bartoš L. What are the reasons for the Prussian carp expansion in the upper Elbe River, Czech Republic? J Fish Biol. 2004;65:240–253. doi: 10.1111/j.0022-1112.2004.00560.x. DOI
Roche K, Janáč M, Šlapanský L, Mikl L, Kopeček L, Jurajda P. A newly established round goby (Neogobius melanostomus) population in the upper stretch of the river Elbe. Knowl Manag Aquat Ecosyst. 2015;416:1–11.
Reyjol Y, Hugueny B, Pont D, Bianco PG, Beier U, Caiola N, et al. Patterns in species richness and endemism of European freshwater fish. Glob Ecol Biogeogr. 2007;16:65–75. doi: 10.1111/j.1466-8238.2006.00264.x. DOI
Reichard M, Jurajda P, Václavík R. Drift of larval and juvenile fishes: a comparison between small and large lowland rivers. Arch Hydrobiol Suppl. 2001;135:373–389.
Jurajda P, Hohausova E, Gelnar M. Seasonal dynamics of fish abundance below a migration barrier in the lower regulated river Morava. Folia Zool. 1998;47:215–223.
Gum B, Gross R, Kuehn R. Mitochondrial and nuclear DNA phylogeography of European grayling (Thymallus thymallus): evidence for secondary contact zones in Central Europe. Mol Ecol. 2005;14:1707–1725. doi: 10.1111/j.1365-294X.2005.02520.x. PubMed DOI
Seifertová M, Bryja J, Vyskočilová M, Martínková N, Šimková A. Multiple Pleistocene refugia and post-glacial colonization in the European chub (Squalius cephalus) revealed by combined use of nuclear and mitochondrial markers. J Biogeogr. 2012;39:1024–1040. doi: 10.1111/j.1365-2699.2011.02661.x. DOI
Lopes-Cunha M, Aboim MA, Mesquita N, Alves MJ, Doadrio I, Coelho MM. Population genetic structure in the Iberian cyprinid fish Iberochondrostoma lemmingii (Steindachner, 1866): disentangling species fragmentation and colonization processes. Biol J Linn Soc Lond. 2012;105:559–572. doi: 10.1111/j.1095-8312.2011.01827.x. DOI
Douda K, Lopes-Lima M, Hinzmann M, Machado J, Varandas S, Teixeira A, Sousa R. Biotic homogenization as a threat to native affiliate species: fish introductions dilute freshwater mussel's host resources. Divers Distrib. 2013;19:933–942. doi: 10.1111/ddi.12044. DOI