Prognóza pacientů s chronickou lymfocytární leukemií (CLL) může být upřesněna některými biologickými rizikovými faktory, jejichž stanovení ale musí být před zavedením do klinické praxe dostatečně standardizováno. V této studii se u 73 pacientů stanovoval mutační stav variabilních segmentů genů pro těžký řetězec imunoglobulinu (IgVH), mutace genu p53 a pomocí flow-cytometrie (FCM) exprese CD38 a tyrozinkinázy ZAP-70. Nemutovaný stav IgVH mělo 58 % nemocných, mutaci p53 19 %, pozitivní expresi CD38 26 % a pozitivní expresi ZAP-70 dle FCM 62 %. Pacienti s nemutovaným IgVH, pozitivní expresí ZAP-70 dle FCM a mutací p53, měli statisticky významně kratší čas od diagnózy do zahájení terapie. Celková konkordance mezi expresí ZAP-70 a mutačním stavem IgVH byla 85 %. Validace FCM analýzy exprese ZAP-70 byla provedena srovnáním s imunohistochemickou detekcí ZAP-70 na histologických preparátech a kvantitativní Real-Time PCR na úrovni ZAP-70 mRNA, kdy celková shoda byla 86 %. Exprese ZAP-70 se ukázala být stabilní v průběhu onemocnění; při mediánu 12 měsíců mezi odběrem prvního a posledního vzorku byla zaznamenána kvalitativní změna exprese ZAP-70 pouze u jednoho pacienta, kdy se stala pozitivní při progresi onemocnění.
Individual prognosis in patients with chronic lymphocytic leukemia (CLL) may be specified by biological risk factors, detection of which must however be sufficiently standardized prior to their introduction into clinical practice. In the presented study of 73 patients we have assessed immunoglobulin variable heavy-chain gene (IgVH) status, presence of mutation in p53 gene and with the use of flow cytometry (FCM) expression of CD38 and ZAP-70 tyrosine kinase. Unmutated IgVH status was present in 58 % patients, p53 mutation in 19 %, positive expression of CD38 in 26 % and positive expression of ZAP-70 using FCM in 62 %. Patients with unmutated IgVH, positive expression of ZAP-70 assessed by FCM and p53 mutation had significantly shorter time from diagnosis to initiation of therapy. Overall concordance between ZAP-70 expression and IgVH mutational status was 85 %. Validation of the FCM ZAP-70 detection was performed by comparison to the immunohistochemical analysis on histological sections and quantitative real-time PCR on the mRNA level; overall concordance was 86 %. Expression of ZAP-70 showed to be stable over time; with median time of 12 months from the acquisition of the first sample to the last, qualitative change of ZAP-70 expression was noted in only one patient, who became positive upon disease progression.
- MeSH
- ADP-ribosyl Cyclase 1 genetics MeSH
- Leukemia, Lymphocytic, Chronic, B-Cell genetics MeSH
- Financing, Organized MeSH
- Genes, p53 genetics MeSH
- Genes, Immunoglobulin Heavy Chain MeSH
- Immunohistochemistry utilization MeSH
- Humans MeSH
- Mutation MeSH
- Prognosis MeSH
- Flow Cytometry MeSH
- Risk Factors MeSH
- Protein-Tyrosine Kinases genetics MeSH
- Check Tag
- Humans MeSH
Differences in ploidy levels among different fern species have a vast influence on their mating system, their colonization ability and on the gene flow among populations. Differences in the colonization abilities of species with different ploidy levels are well known: tetraploids, in contrast to diploids, are able to undergo intra-gametophytic selfing. Because fertilization is a post-dispersal process in ferns, selfing results in better colonization abilities in tetraploids because of single spore colonization. Considerably less is known about the gene flow among populations of different ploidy levels. The present study examines two rare fern species that differ in ploidy. While it has already been confirmed that tetraploid species are better at colonizing, the present study focuses on the gene flow among existing populations. We analyzed the genetic structure of a set of populations in a 10×10 km study region using isoenzymes. Genetic variation in tetraploid species is distributed mainly among populations; the genetic distance between populations is correlated with the geographical distance, and larger populations host more genetic diversity than smaller populations. In the diploid species, most variability is partitioned within populations; the genetic distance is not related to geographic distance, and the genetic diversity of populations is not related to the population size. This suggests that in tetraploid species, which undergo selfing, gene flow is limited. In contrast, in the diploid species, which experience outcrossing, gene flow is extensive and the whole system behaves as one large population. Our results suggest that in ferns, the ability to colonize new habitats and the gene flow among existing populations are affected by the mating system.
- MeSH
- Alleles MeSH
- Genetic Variation MeSH
- Genetic Markers MeSH
- Heterozygote MeSH
- Inbreeding MeSH
- Isoenzymes genetics MeSH
- Ferns enzymology genetics MeSH
- Ploidies * MeSH
- Genes, Plant MeSH
- Plant Proteins genetics MeSH
- Reproduction MeSH
- Gene Flow * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
184 s. : il. ; 25 cm
- MeSH
- Blood Flow Velocity MeSH
- Ultrasonics MeSH
- Publication type
- Handbook MeSH
- Conspectus
- Patologie. Klinická medicína
- NML Fields
- hematologie a transfuzní lékařství
Gene flow between species may last a long time in plants. Reticulation inevitably causes difficulties in phylogenetic reconstruction. In this study, we looked into the genetic divergence and phylogeny of 20 Lilium species based on multilocus analyses of 8 genes of chloroplast DNA (cpDNA), the internally transcribed nuclear ribosomal DNA (nrITS) spacer and 20 loci extracted from the expressed sequence tag (EST) libraries of L. longiflorum Thunb. and L. formosanum Wallace. The phylogeny based on the combined data of the maternally inherited cpDNA and nrITS was largely consistent with the taxonomy of Lilium sections. This phylogeny was deemed the hypothetical species tree and uncovered three groups, i.e., Cluster A consisting of 4 taxa from the sections Pseudolirium and Liriotypus, Cluster B consisting of the 4 taxa from the sections Leucolirion, Archelirion and Daurolirion, and Cluster C comprising 10 taxa mostly from the sections Martagon and Sinomartagon. In contrast, systematic inconsistency occurred across the EST loci, with up to 19 genes (95%) displaying tree topologies deviating from the hypothetical species tree. The phylogenetic incongruence was likely attributable to the frequent genetic exchanges between species/sections, as indicated by the high levels of genetic recombination and the IMa analyses with the EST loci. Nevertheless, multilocus analysis could provide complementary information among the loci on the species split and the extent of gene flow between the species. In conclusion, this study not only detected frequent gene flow among Lilium sections that resulted in phylogenetic incongruence but also reconstructed a hypothetical species tree that gave insights into the nature of the complex relationships among Lilium species.
- MeSH
- DNA, Chloroplast genetics MeSH
- Phylogeny MeSH
- Lilium classification genetics MeSH
- Genes, Plant * MeSH
- Gene Flow * MeSH
- Publication type
- Journal Article MeSH
MutChromSeq is an approach for isolation of genes and DNA sequences controlling gene expression in plants with complex and polyploid genomes. It involves a lossless complexity reduction by flow cytometric chromosome sorting and shotgun sequencing DNA from isolated chromosomes. Comparison of sequences from wild-type parental chromosome with chromosomes from multiple independently derived mutants identifies causative mutations in a single candidate gene or a noncoding sequence. MutChromSeq does not rely on recombination-based genetic mapping and does not exclude any DNA sequence from being targeted.
- MeSH
- Chromosomes, Plant genetics MeSH
- DNA, Plant genetics MeSH
- Genome, Plant MeSH
- Genomics methods MeSH
- In Situ Hybridization, Fluorescence methods MeSH
- Mutation * MeSH
- Polyploidy MeSH
- Flow Cytometry methods MeSH
- Gene Expression Regulation, Plant MeSH
- Plants genetics MeSH
- Sequence Analysis, DNA methods MeSH
- Publication type
- Journal Article MeSH