Does the Pollen Diet Influence the Production and Expression of Antimicrobial Peptides in Individual Honey Bees?

. 2018 Jul 04 ; 9 (3) : . [epub] 20180704

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29973559

We investigated the importance of protein nutrition for honey bee immunity. Different protein diets (monofloral pollen of Helianthus spp., Sinapis spp., Asparagus spp., Castanea spp., a mixture of the four different pollen and the pollen substitute FeedbeeTM) were fed to honey bees in cages ad libitum. After 18 days of feeding, apidaecin 1 isoforms concentration in the thorax were measured using nanoflow liquid chromatography coupled with mass spectrometry. Expression levels of genes, coding for apidaecins and abaecin in the abdomen were determined using quantitative PCR. The results indicate that protein-containing nutrition in adult worker honey bees can trigger certain metabolic responses. Bees without dietary protein showed lower apidaecin 1 isoforms concentrations. The significantly lowest concentration of apidaecin 1 isoforms was found in the group that was fed no pollen diet when compared to Asparagus, Castanea, Helianthus, and Sinapis pollen or the pollen supplement FeedBeeTM. Expression levels of the respective genes were also affected by the protein diets and different expression levels of these two antimicrobial peptides were found. Positive correlation between concentration and gene expression of apidaecins was found. The significance of feeding bees with different protein diets, as well as the importance of pollen nutrition for honey bee immunity is demonstrated.

Zobrazit více v PubMed

Brodschneider R., Crailsheim K. Nutrition and health in honey bees. Apidologie. 2010;41:278–294. doi: 10.1051/apido/2010012. DOI

Di Pasquale G., Salignon M., Le Conte Y., Belzunces L.P., Decourtye A., Kretzschmar A., Suchail S., Brunet J.-L., Alaux C. Influence of pollen nutrition on honey bee health: Do pollen quality and diversity matter? PLoS ONE. 2013;8:e72016. doi: 10.1371/journal.pone.0072016. PubMed DOI PMC

Crailsheim K., Schneider L.H.W., Hrassnigg N., Buhlmann G., Brosch U., Gmeinbauer R., Schöffmann B. Pollen consumption and utilization in worker honeybees (Apis mellifera carnica)—Dependence on individual age and function. J. Insect Physiol. 1992;38:409–419. doi: 10.1016/0022-1910(92)90117-V. DOI

Wheeler M.M., Robinson G.E. Diet-dependent gene expression in honey bees: Honey vs. Sucrose or high fructose corn syrup. Sci. Rep. 2014;4:5726. doi: 10.1038/srep05726. PubMed DOI PMC

Evans J.D., Aronstein K., Chen Y.P., Hetru C., Imler J.L., Jiang H., Kanost M., Thompson G.J., Zou Z., Hultmark D. Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect Mol. Biol. 2006;15:645–656. doi: 10.1111/j.1365-2583.2006.00682.x. PubMed DOI PMC

Barribeau S.M., Sadd B.M., du Plessis L., Brown M.J.F., Buechel S.D., Cappelle K., Carolan J.C., Christiaens O., Colgan T.J., Erler S., et al. A depauperate immune repertoire precedes evolution of sociality in bees. Genome Biol. 2015;16:83. doi: 10.1186/s13059-015-0628-y. PubMed DOI PMC

Wilson-Rich N., Spivak M., Fefferman N.H., Starks P.T. Genetic, individual, and group facilitation of disease resistance in insect societies. Annu. Rev. Entomol. 2009;54:405–423. doi: 10.1146/annurev.ento.53.103106.093301. PubMed DOI

Evans J.D., Spivak M. Socialized medicine: Individual and communal disease barriers in honey bees. J. Invertebr. Pathol. 2010;103:S62–S72. doi: 10.1016/j.jip.2009.06.019. PubMed DOI

De Grandi-Hoffman G., Chen Y. Nutrition, immunity and viral infections in honey bees. Curr. Opin. Insect Sci. 2015;10:170–176. doi: 10.1016/j.cois.2015.05.007. PubMed DOI

Gätschenberger H., Azzami K., Tautz J., Beier H. Antibacterial immune competence of honey bees (Apis mellifera) is adapted to different life stages and environmental risks. PLoS ONE. 2013;8:e66415. doi: 10.1371/journal.pone.0066415. PubMed DOI PMC

Steinmann N., Corona M., Neumann P., Dainat B. Overwintering is associated with reduced expression of immune genes and higher susceptibility to virus infection in honey bees. PLoS ONE. 2015;10:e0129956. doi: 10.1371/journal.pone.0129956. PubMed DOI PMC

Brandt A., Gorenflo A., Siede R., Meixner M., Büchler R. The neonicotinoids thiacloprid, imidacloprid, and clothianidin affect the immunocompetence of honey bees (Apis mellifera L.) J. Insect Physiol. 2016;86:40–47. doi: 10.1016/j.jinsphys.2016.01.001. PubMed DOI

Casteels-Josson K., Capaci T., Casteels P., Tempst P. Apidaecin multipeptide precursor structure—A putative mechanism for amplification of the insect antibacterial response. EMBO J. 1993;12:1569–1578. PubMed PMC

Casteels P., Ampe C., Riviere L., Van Damme J., Elicone C., Fleming M., Jacobs F., Tempst P. Isolation and characterization of abaecin, a major antibacterial response peptide in the honeybee (Apis mellifera) Eur. J. Biochem. 1990;187:381–386. doi: 10.1111/j.1432-1033.1990.tb15315.x. PubMed DOI

Casteels P., Ampe C., Jacobs F., Vaeck M., Tempst P. Apidaecins: Antibacterial peptides from honeybees. EMBO J. 1989;8:2387–2391. PubMed PMC

Fujiwara S., Imai J., Fujiwara M., Yaeshima T., Kawashima T., Kobayashi K. A potent antibacterial protein in royal jelly. Purification and determination of the primary structure of royalisin. J. Biol. Chem. 1990;265:11333–11337. PubMed

Klaudiny J., Albert T., Bachanova K., Kopernick J., Simuth J. Two structurally different defensin genes, one of them encoding a novel defensin isoform, are expressed in honeybee Apis mellifera. Insect Biochem. Mol. 2005;35:11–22. doi: 10.1016/j.ibmb.2004.09.007. PubMed DOI

Vilmos P., Kurucz É. Insect immunity: Evolutionary roots of the mammalian innate immune system. Immunol. Lett. 1998;62:59–66. doi: 10.1016/S0165-2478(98)00023-6. PubMed DOI

Danihlík J., Aronstein K., Petřivalský M. Antimicrobial peptides: A key component of honey bee innate immunity. J. Apic. Res. 2016;54:123–136. doi: 10.1080/00218839.2015.1109919. DOI

Casteels P., Ampe C., Jacobs F., Tempst P. Functional and chemical characterization of hymenoptaecin, an antibacterial polypeptide that is infection-inducible in the honeybee (Apis mellifera) J. Biol. Chem. 1993;268:7044–7054. PubMed

Chaimanee V., Chantawannakul P., Chen Y., Evans J.D., Pettis J.S. Differential expression of immune genes of adult honey bee (Apis mellifera) after inoculated by Nosema ceranae. J. Insect Physiol. 2012;58:1090–1095. doi: 10.1016/j.jinsphys.2012.04.016. PubMed DOI

Siede R., Meixner M.D., Büchler R. Comparison of transcriptional changes of immune genes to experimental challenge in the honey bee (Apis mellifera) J. Apic. Res. 2012;51:320–328. doi: 10.3896/IBRA.1.51.4.05. DOI

Jefferson J.M., Dolstad H.A., Sivalingam M.D., Snow J.W. Barrier immune effectors are maintained during transition from nurse to forager in the honey bee. PLoS ONE. 2013;8:e54097. doi: 10.1371/journal.pone.0054097. PubMed DOI PMC

Bilikova K., Hanes J., Nordhoff E., Saenger W., Klaudiny J., Simuth J. Apisimin, a new serine-valine-rich peptide from honeybee (Apis mellifera L.) royal jelly: Purification and molecular characterization. FEBS Lett. 2002;528:125–129. doi: 10.1016/S0014-5793(02)03272-6. PubMed DOI

Baracchi D., Francese S., Turillazzi S. Beyond the antipredatory defence: Honey bee venom function as a component of social immunity. Toxicon. 2011;58:550–557. doi: 10.1016/j.toxicon.2011.08.017. PubMed DOI

Danihlík J., Šebela M., Petřivalský M., Lenobel R. A sensitive quantification of the peptide apidaecin 1 isoforms in single bee tissues using a weak cation exchange pre-separation and nanocapillary liquid chromatography coupled with mass spectrometry. J. Chromatogr. A. 2014;1374:134–144. doi: 10.1016/j.chroma.2014.11.041. PubMed DOI

Williams G.R., Alaux C., Costa C., Csaki T., Doublet V., Eisenhardt D., Fries I., Kuhn R., McMahon D.P., Medrzycki P., et al. Standard methods for maintaining adult Apis mellifera in cages under in vitro laboratory conditions. J. Apic. Res. 2013;52:1–36. doi: 10.3896/IBRA.1.52.1.04. DOI

Saffari A., Kevan P.G., Atkinson J. Consumption of three dry pollen substitutes in commercial apiaries. J. Apic. Sci. 2010;54:13–20.

Omar E., Abd-Ella A.A., Khodairy M.M., Moosbeckhofer R., Crailsheim K., Brodschneider R. Influence of different pollen diets on the development of hypopharyngeal glands and size of acid gland sacs in caged honey bees (Apis mellifera) Apidologie. 2017;48:425–436. doi: 10.1007/s13592-016-0487-x. DOI

Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI

Evans J.D., Schwarz R.S., Chen Y.P., Budge G., Cornman R.S., De la Rua P., de Miranda J.R., Foret S., Foster L., Gauthier L., et al. Standard methods for molecular research in Apis mellifera. J. Apic. Res. 2013;52:1–54. doi: 10.3896/IBRA.1.52.4.11. DOI

Lourenço A.P., Mackert A., dos Santos Cristino A., Simões Z.L.P. Validation of reference genes for gene expression studies in the honey bee, Apis mellifera, by quantitative real-time RT-PCR. Apidologie. 2008;39:372–385. doi: 10.1051/apido:2008015. DOI

Pfaffl M., Tichopad A., Prgomet C., Neuvians T. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: Bestkeeper—Excel-based tool using pair-wise correlations. Biotechnol. Lett. 2004;26:509–515. doi: 10.1023/B:BILE.0000019559.84305.47. PubMed DOI

Bustin S.A., Benes V., Garson J.A., Hellemans J., Huggett J., Kubista M., Mueller R., Nolan T., Pfaffl M.W., Shipley G.L., et al. The miqe guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 2009;55:611–622. doi: 10.1373/clinchem.2008.112797. PubMed DOI

Pfaffl M.W. A new mathematical model for relative quantification in real-time rt-pcr. Nucl. Acids Res. 2001;29:e45. doi: 10.1093/nar/29.9.e45. PubMed DOI PMC

Vandesompele J., De Preter K., Pattyn F., Poppe B., Van Roy N., De Paepe A., Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3 doi: 10.1186/gb-2002-3-7-research0034. PubMed DOI PMC

Paoli P.P., Donley D., Stabler D., Saseendranath A., Nicolson S.W., Simpson S.J., Wright G.A. Nutritional balance of essential amino acids and carbohydrates of the adult worker honeybee depends on age. Amino Acids. 2014;46:1449–1458. doi: 10.1007/s00726-014-1706-2. PubMed DOI PMC

De Groot A.P. Protein and amino acid requirements of the honeybee (Apis mellifera L.) Physiol. Comp. Oecol. 1953;3:197–285.

Nicolson S., Human H. Chemical composition of the ‘low quality’ pollen of sunflower (Helianthus annuus, Asteraceae) Apidologie. 2013;44:144–152. doi: 10.1007/s13592-012-0166-5. DOI

Corby-Harris V., Jones B., Walton A., Schwan M., Anderson K. Transcriptional markers of sub-optimal nutrition in developing Apis mellifera nurse workers. BMC Genom. 2014;15:134. doi: 10.1186/1471-2164-15-134. PubMed DOI PMC

Johnson R.M., Mao W., Pollock H.S., Niu G., Schuler M.A., Berenbaum M.R. Ecologically appropriate xenobiotics induce cytochrome p450s in Apis mellifera. PLoS ONE. 2012;7:e31051. doi: 10.1371/journal.pone.0031051. PubMed DOI PMC

Mao W., Schuler M.A., Berenbaum M.R. Honey constituents up-regulate detoxification and immunity genes in the western honey bee Apis mellifera. Proc. Natl. Acad. Sci. USA. 2013;110:8842–8846. doi: 10.1073/pnas.1303884110. PubMed DOI PMC

Doublet V., Poeschl Y., Gogol-Döring A., Alaux C., Annoscia D., Aurori C., Barribeau S.M., Bedoya-Reina O.C., Brown M.J.F., Bull J.C., et al. Unity in defence: Honeybee workers exhibit conserved molecular responses to diverse pathogens. BMC Genom. 2017;18:207. doi: 10.1186/s12864-017-3597-6. PubMed DOI PMC

Flenniken M.L., Andino R. Non-specific dsRNA-mediated antiviral response in the honey bee. PLoS ONE. 2013;8:e77263. doi: 10.1371/journal.pone.0077263. PubMed DOI PMC

Selbach M., Schwanhausser B., Thierfelder N., Fang Z., Khanin R., Rajewsky N. Widespread changes in protein synthesis induced by micrornas. Nature. 2008;455:58–63. doi: 10.1038/nature07228. PubMed DOI

Asgari S. MicroRNA functions in insects. Insect Biochem. Mol. Biol. 2013;43:388–397. doi: 10.1016/j.ibmb.2012.10.005. PubMed DOI

Alaux C., Dantec C., Parrinello H., Le Conte Y. Nutrigenomics in honey bees: Digital gene expression analysis of pollen’s nutritive effects on healthy and Varroa-parasitized bees. BMC Genom. 2011;12:496. doi: 10.1186/1471-2164-12-496. PubMed DOI PMC

Schmidt J.O., Thoenes S.C., Levin M.D. Survival of honey bees, Apis mellifera (Hymenoptera: Apidae), fed various pollen sources. Ann. Entomol. Soc. Am. 1987;80:176–183. doi: 10.1093/aesa/80.2.176. DOI

Campana B.J., Moeller F.E. Honey bees: Preference for and nutritive value of pollen from five plant sources. J. Econ. Entomol. 1977;70:39–41. doi: 10.1093/jee/70.1.39. DOI

Höcherl N., Siede R., Illies I., Gätschenberger H., Tautz J. Evaluation of the nutritive value of maize for honey bees. J. Insect Physiol. 2012;58:278–285. doi: 10.1016/j.jinsphys.2011.12.001. PubMed DOI

De Jong D., da Silva E.J., Kevan P.G., Atkinson J.L. Pollen substitutes increase honey bee haemolymph protein levels as much as or more than does pollen. J. Apic. Res. 2009;48:34–37. doi: 10.3896/IBRA.1.48.1.08. DOI

Boncristiani H., Underwood R., Schwarz R., Evans J.D., Pettis J., vanEngelsdorp D. Direct effect of acaricides on pathogen loads and gene expression levels in honey bees Apis mellifera. J. Insect Physiol. 2012;58:613–620. doi: 10.1016/j.jinsphys.2011.12.011. PubMed DOI

Johnson R.M. Honey bee toxicology. Ann. Rev. Entomol. 2015;60:415–434. doi: 10.1146/annurev-ento-011613-162005. PubMed DOI

Schmehl D.R., Teal P.E.A., Frazier J.L., Grozinger C.M. Genomic analysis of the interaction between pesticide exposure and nutrition in honey bees (Apis mellifera) J. Insect Physiol. 2014;71:177–190. doi: 10.1016/j.jinsphys.2014.10.002. PubMed DOI

Ambika Manirajan B., Ratering S., Rusch V., Schwiertz A., Geissler-Plaum R., Cardinale M., Schnell S. Bacterial microbiota associated with flower pollen is influenced by pollination type, and shows a high degree of diversity and species-specificity. Environ. Microbiol. 2016;18:5161–5174. doi: 10.1111/1462-2920.13524. PubMed DOI

McFrederick Q.S., Thomas J.M., Neff J.L., Vuong H.Q., Russell K.A., Hale A.R., Mueller U.G. Flowers and wild megachilid bees share microbes. Microb. Ecol. 2017;73:188–200. doi: 10.1007/s00248-016-0838-1. PubMed DOI

Kwong W.K., Moran N.A. Gut microbial communities of social bees. Nat. Rev. Microbiol. 2016;14:374–384. doi: 10.1038/nrmicro.2016.43. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...