Does the Pollen Diet Influence the Production and Expression of Antimicrobial Peptides in Individual Honey Bees?
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
29973559
PubMed Central
PMC6164669
DOI
10.3390/insects9030079
PII: insects9030079
Knihovny.cz E-zdroje
- Klíčová slova
- Apis mellifera, abaecin, apidaecin, dietary proteins, gene expression, pollen,
- Publikační typ
- časopisecké články MeSH
We investigated the importance of protein nutrition for honey bee immunity. Different protein diets (monofloral pollen of Helianthus spp., Sinapis spp., Asparagus spp., Castanea spp., a mixture of the four different pollen and the pollen substitute FeedbeeTM) were fed to honey bees in cages ad libitum. After 18 days of feeding, apidaecin 1 isoforms concentration in the thorax were measured using nanoflow liquid chromatography coupled with mass spectrometry. Expression levels of genes, coding for apidaecins and abaecin in the abdomen were determined using quantitative PCR. The results indicate that protein-containing nutrition in adult worker honey bees can trigger certain metabolic responses. Bees without dietary protein showed lower apidaecin 1 isoforms concentrations. The significantly lowest concentration of apidaecin 1 isoforms was found in the group that was fed no pollen diet when compared to Asparagus, Castanea, Helianthus, and Sinapis pollen or the pollen supplement FeedBeeTM. Expression levels of the respective genes were also affected by the protein diets and different expression levels of these two antimicrobial peptides were found. Positive correlation between concentration and gene expression of apidaecins was found. The significance of feeding bees with different protein diets, as well as the importance of pollen nutrition for honey bee immunity is demonstrated.
Zobrazit více v PubMed
Brodschneider R., Crailsheim K. Nutrition and health in honey bees. Apidologie. 2010;41:278–294. doi: 10.1051/apido/2010012. DOI
Di Pasquale G., Salignon M., Le Conte Y., Belzunces L.P., Decourtye A., Kretzschmar A., Suchail S., Brunet J.-L., Alaux C. Influence of pollen nutrition on honey bee health: Do pollen quality and diversity matter? PLoS ONE. 2013;8:e72016. doi: 10.1371/journal.pone.0072016. PubMed DOI PMC
Crailsheim K., Schneider L.H.W., Hrassnigg N., Buhlmann G., Brosch U., Gmeinbauer R., Schöffmann B. Pollen consumption and utilization in worker honeybees (Apis mellifera carnica)—Dependence on individual age and function. J. Insect Physiol. 1992;38:409–419. doi: 10.1016/0022-1910(92)90117-V. DOI
Wheeler M.M., Robinson G.E. Diet-dependent gene expression in honey bees: Honey vs. Sucrose or high fructose corn syrup. Sci. Rep. 2014;4:5726. doi: 10.1038/srep05726. PubMed DOI PMC
Evans J.D., Aronstein K., Chen Y.P., Hetru C., Imler J.L., Jiang H., Kanost M., Thompson G.J., Zou Z., Hultmark D. Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect Mol. Biol. 2006;15:645–656. doi: 10.1111/j.1365-2583.2006.00682.x. PubMed DOI PMC
Barribeau S.M., Sadd B.M., du Plessis L., Brown M.J.F., Buechel S.D., Cappelle K., Carolan J.C., Christiaens O., Colgan T.J., Erler S., et al. A depauperate immune repertoire precedes evolution of sociality in bees. Genome Biol. 2015;16:83. doi: 10.1186/s13059-015-0628-y. PubMed DOI PMC
Wilson-Rich N., Spivak M., Fefferman N.H., Starks P.T. Genetic, individual, and group facilitation of disease resistance in insect societies. Annu. Rev. Entomol. 2009;54:405–423. doi: 10.1146/annurev.ento.53.103106.093301. PubMed DOI
Evans J.D., Spivak M. Socialized medicine: Individual and communal disease barriers in honey bees. J. Invertebr. Pathol. 2010;103:S62–S72. doi: 10.1016/j.jip.2009.06.019. PubMed DOI
De Grandi-Hoffman G., Chen Y. Nutrition, immunity and viral infections in honey bees. Curr. Opin. Insect Sci. 2015;10:170–176. doi: 10.1016/j.cois.2015.05.007. PubMed DOI
Gätschenberger H., Azzami K., Tautz J., Beier H. Antibacterial immune competence of honey bees (Apis mellifera) is adapted to different life stages and environmental risks. PLoS ONE. 2013;8:e66415. doi: 10.1371/journal.pone.0066415. PubMed DOI PMC
Steinmann N., Corona M., Neumann P., Dainat B. Overwintering is associated with reduced expression of immune genes and higher susceptibility to virus infection in honey bees. PLoS ONE. 2015;10:e0129956. doi: 10.1371/journal.pone.0129956. PubMed DOI PMC
Brandt A., Gorenflo A., Siede R., Meixner M., Büchler R. The neonicotinoids thiacloprid, imidacloprid, and clothianidin affect the immunocompetence of honey bees (Apis mellifera L.) J. Insect Physiol. 2016;86:40–47. doi: 10.1016/j.jinsphys.2016.01.001. PubMed DOI
Casteels-Josson K., Capaci T., Casteels P., Tempst P. Apidaecin multipeptide precursor structure—A putative mechanism for amplification of the insect antibacterial response. EMBO J. 1993;12:1569–1578. PubMed PMC
Casteels P., Ampe C., Riviere L., Van Damme J., Elicone C., Fleming M., Jacobs F., Tempst P. Isolation and characterization of abaecin, a major antibacterial response peptide in the honeybee (Apis mellifera) Eur. J. Biochem. 1990;187:381–386. doi: 10.1111/j.1432-1033.1990.tb15315.x. PubMed DOI
Casteels P., Ampe C., Jacobs F., Vaeck M., Tempst P. Apidaecins: Antibacterial peptides from honeybees. EMBO J. 1989;8:2387–2391. PubMed PMC
Fujiwara S., Imai J., Fujiwara M., Yaeshima T., Kawashima T., Kobayashi K. A potent antibacterial protein in royal jelly. Purification and determination of the primary structure of royalisin. J. Biol. Chem. 1990;265:11333–11337. PubMed
Klaudiny J., Albert T., Bachanova K., Kopernick J., Simuth J. Two structurally different defensin genes, one of them encoding a novel defensin isoform, are expressed in honeybee Apis mellifera. Insect Biochem. Mol. 2005;35:11–22. doi: 10.1016/j.ibmb.2004.09.007. PubMed DOI
Vilmos P., Kurucz É. Insect immunity: Evolutionary roots of the mammalian innate immune system. Immunol. Lett. 1998;62:59–66. doi: 10.1016/S0165-2478(98)00023-6. PubMed DOI
Danihlík J., Aronstein K., Petřivalský M. Antimicrobial peptides: A key component of honey bee innate immunity. J. Apic. Res. 2016;54:123–136. doi: 10.1080/00218839.2015.1109919. DOI
Casteels P., Ampe C., Jacobs F., Tempst P. Functional and chemical characterization of hymenoptaecin, an antibacterial polypeptide that is infection-inducible in the honeybee (Apis mellifera) J. Biol. Chem. 1993;268:7044–7054. PubMed
Chaimanee V., Chantawannakul P., Chen Y., Evans J.D., Pettis J.S. Differential expression of immune genes of adult honey bee (Apis mellifera) after inoculated by Nosema ceranae. J. Insect Physiol. 2012;58:1090–1095. doi: 10.1016/j.jinsphys.2012.04.016. PubMed DOI
Siede R., Meixner M.D., Büchler R. Comparison of transcriptional changes of immune genes to experimental challenge in the honey bee (Apis mellifera) J. Apic. Res. 2012;51:320–328. doi: 10.3896/IBRA.1.51.4.05. DOI
Jefferson J.M., Dolstad H.A., Sivalingam M.D., Snow J.W. Barrier immune effectors are maintained during transition from nurse to forager in the honey bee. PLoS ONE. 2013;8:e54097. doi: 10.1371/journal.pone.0054097. PubMed DOI PMC
Bilikova K., Hanes J., Nordhoff E., Saenger W., Klaudiny J., Simuth J. Apisimin, a new serine-valine-rich peptide from honeybee (Apis mellifera L.) royal jelly: Purification and molecular characterization. FEBS Lett. 2002;528:125–129. doi: 10.1016/S0014-5793(02)03272-6. PubMed DOI
Baracchi D., Francese S., Turillazzi S. Beyond the antipredatory defence: Honey bee venom function as a component of social immunity. Toxicon. 2011;58:550–557. doi: 10.1016/j.toxicon.2011.08.017. PubMed DOI
Danihlík J., Šebela M., Petřivalský M., Lenobel R. A sensitive quantification of the peptide apidaecin 1 isoforms in single bee tissues using a weak cation exchange pre-separation and nanocapillary liquid chromatography coupled with mass spectrometry. J. Chromatogr. A. 2014;1374:134–144. doi: 10.1016/j.chroma.2014.11.041. PubMed DOI
Williams G.R., Alaux C., Costa C., Csaki T., Doublet V., Eisenhardt D., Fries I., Kuhn R., McMahon D.P., Medrzycki P., et al. Standard methods for maintaining adult Apis mellifera in cages under in vitro laboratory conditions. J. Apic. Res. 2013;52:1–36. doi: 10.3896/IBRA.1.52.1.04. DOI
Saffari A., Kevan P.G., Atkinson J. Consumption of three dry pollen substitutes in commercial apiaries. J. Apic. Sci. 2010;54:13–20.
Omar E., Abd-Ella A.A., Khodairy M.M., Moosbeckhofer R., Crailsheim K., Brodschneider R. Influence of different pollen diets on the development of hypopharyngeal glands and size of acid gland sacs in caged honey bees (Apis mellifera) Apidologie. 2017;48:425–436. doi: 10.1007/s13592-016-0487-x. DOI
Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI
Evans J.D., Schwarz R.S., Chen Y.P., Budge G., Cornman R.S., De la Rua P., de Miranda J.R., Foret S., Foster L., Gauthier L., et al. Standard methods for molecular research in Apis mellifera. J. Apic. Res. 2013;52:1–54. doi: 10.3896/IBRA.1.52.4.11. DOI
Lourenço A.P., Mackert A., dos Santos Cristino A., Simões Z.L.P. Validation of reference genes for gene expression studies in the honey bee, Apis mellifera, by quantitative real-time RT-PCR. Apidologie. 2008;39:372–385. doi: 10.1051/apido:2008015. DOI
Pfaffl M., Tichopad A., Prgomet C., Neuvians T. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: Bestkeeper—Excel-based tool using pair-wise correlations. Biotechnol. Lett. 2004;26:509–515. doi: 10.1023/B:BILE.0000019559.84305.47. PubMed DOI
Bustin S.A., Benes V., Garson J.A., Hellemans J., Huggett J., Kubista M., Mueller R., Nolan T., Pfaffl M.W., Shipley G.L., et al. The miqe guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 2009;55:611–622. doi: 10.1373/clinchem.2008.112797. PubMed DOI
Pfaffl M.W. A new mathematical model for relative quantification in real-time rt-pcr. Nucl. Acids Res. 2001;29:e45. doi: 10.1093/nar/29.9.e45. PubMed DOI PMC
Vandesompele J., De Preter K., Pattyn F., Poppe B., Van Roy N., De Paepe A., Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3 doi: 10.1186/gb-2002-3-7-research0034. PubMed DOI PMC
Paoli P.P., Donley D., Stabler D., Saseendranath A., Nicolson S.W., Simpson S.J., Wright G.A. Nutritional balance of essential amino acids and carbohydrates of the adult worker honeybee depends on age. Amino Acids. 2014;46:1449–1458. doi: 10.1007/s00726-014-1706-2. PubMed DOI PMC
De Groot A.P. Protein and amino acid requirements of the honeybee (Apis mellifera L.) Physiol. Comp. Oecol. 1953;3:197–285.
Nicolson S., Human H. Chemical composition of the ‘low quality’ pollen of sunflower (Helianthus annuus, Asteraceae) Apidologie. 2013;44:144–152. doi: 10.1007/s13592-012-0166-5. DOI
Corby-Harris V., Jones B., Walton A., Schwan M., Anderson K. Transcriptional markers of sub-optimal nutrition in developing Apis mellifera nurse workers. BMC Genom. 2014;15:134. doi: 10.1186/1471-2164-15-134. PubMed DOI PMC
Johnson R.M., Mao W., Pollock H.S., Niu G., Schuler M.A., Berenbaum M.R. Ecologically appropriate xenobiotics induce cytochrome p450s in Apis mellifera. PLoS ONE. 2012;7:e31051. doi: 10.1371/journal.pone.0031051. PubMed DOI PMC
Mao W., Schuler M.A., Berenbaum M.R. Honey constituents up-regulate detoxification and immunity genes in the western honey bee Apis mellifera. Proc. Natl. Acad. Sci. USA. 2013;110:8842–8846. doi: 10.1073/pnas.1303884110. PubMed DOI PMC
Doublet V., Poeschl Y., Gogol-Döring A., Alaux C., Annoscia D., Aurori C., Barribeau S.M., Bedoya-Reina O.C., Brown M.J.F., Bull J.C., et al. Unity in defence: Honeybee workers exhibit conserved molecular responses to diverse pathogens. BMC Genom. 2017;18:207. doi: 10.1186/s12864-017-3597-6. PubMed DOI PMC
Flenniken M.L., Andino R. Non-specific dsRNA-mediated antiviral response in the honey bee. PLoS ONE. 2013;8:e77263. doi: 10.1371/journal.pone.0077263. PubMed DOI PMC
Selbach M., Schwanhausser B., Thierfelder N., Fang Z., Khanin R., Rajewsky N. Widespread changes in protein synthesis induced by micrornas. Nature. 2008;455:58–63. doi: 10.1038/nature07228. PubMed DOI
Asgari S. MicroRNA functions in insects. Insect Biochem. Mol. Biol. 2013;43:388–397. doi: 10.1016/j.ibmb.2012.10.005. PubMed DOI
Alaux C., Dantec C., Parrinello H., Le Conte Y. Nutrigenomics in honey bees: Digital gene expression analysis of pollen’s nutritive effects on healthy and Varroa-parasitized bees. BMC Genom. 2011;12:496. doi: 10.1186/1471-2164-12-496. PubMed DOI PMC
Schmidt J.O., Thoenes S.C., Levin M.D. Survival of honey bees, Apis mellifera (Hymenoptera: Apidae), fed various pollen sources. Ann. Entomol. Soc. Am. 1987;80:176–183. doi: 10.1093/aesa/80.2.176. DOI
Campana B.J., Moeller F.E. Honey bees: Preference for and nutritive value of pollen from five plant sources. J. Econ. Entomol. 1977;70:39–41. doi: 10.1093/jee/70.1.39. DOI
Höcherl N., Siede R., Illies I., Gätschenberger H., Tautz J. Evaluation of the nutritive value of maize for honey bees. J. Insect Physiol. 2012;58:278–285. doi: 10.1016/j.jinsphys.2011.12.001. PubMed DOI
De Jong D., da Silva E.J., Kevan P.G., Atkinson J.L. Pollen substitutes increase honey bee haemolymph protein levels as much as or more than does pollen. J. Apic. Res. 2009;48:34–37. doi: 10.3896/IBRA.1.48.1.08. DOI
Boncristiani H., Underwood R., Schwarz R., Evans J.D., Pettis J., vanEngelsdorp D. Direct effect of acaricides on pathogen loads and gene expression levels in honey bees Apis mellifera. J. Insect Physiol. 2012;58:613–620. doi: 10.1016/j.jinsphys.2011.12.011. PubMed DOI
Johnson R.M. Honey bee toxicology. Ann. Rev. Entomol. 2015;60:415–434. doi: 10.1146/annurev-ento-011613-162005. PubMed DOI
Schmehl D.R., Teal P.E.A., Frazier J.L., Grozinger C.M. Genomic analysis of the interaction between pesticide exposure and nutrition in honey bees (Apis mellifera) J. Insect Physiol. 2014;71:177–190. doi: 10.1016/j.jinsphys.2014.10.002. PubMed DOI
Ambika Manirajan B., Ratering S., Rusch V., Schwiertz A., Geissler-Plaum R., Cardinale M., Schnell S. Bacterial microbiota associated with flower pollen is influenced by pollination type, and shows a high degree of diversity and species-specificity. Environ. Microbiol. 2016;18:5161–5174. doi: 10.1111/1462-2920.13524. PubMed DOI
McFrederick Q.S., Thomas J.M., Neff J.L., Vuong H.Q., Russell K.A., Hale A.R., Mueller U.G. Flowers and wild megachilid bees share microbes. Microb. Ecol. 2017;73:188–200. doi: 10.1007/s00248-016-0838-1. PubMed DOI
Kwong W.K., Moran N.A. Gut microbial communities of social bees. Nat. Rev. Microbiol. 2016;14:374–384. doi: 10.1038/nrmicro.2016.43. PubMed DOI PMC