Flow of CO2 from soil may not correspond with CO2 concentration in soil
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
18-24138S
Grantová Agentura České Republiky (Grant Agency of the Czech Republic) - International
PubMed
29973618
PubMed Central
PMC6031679
DOI
10.1038/s41598-018-28225-z
PII: 10.1038/s41598-018-28225-z
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The relationship between CO2 flow from soil and soil CO2 concentration was investigated at 72 permanent sampling points at two forested post-mining sites in the northwest of the Czechia. Based on the entire data set (72 points sampled monthly during the growing season), CO2 flow from the soil was positively correlated with soil CO2 concentration. CO2 concentration in deeper soil layers was positively correlated with root biomass and negatively correlated with soil microbial respiration. In individual sampling points relationship between CO2 flow and soil CO2 concentration varied from being significantly positive (30% of points) to significantly negative (7%) but mostly being non-significant (63%). The positive correlation occurred at points with high root biomass in deeper soil layers, while the negative correlation occurred at points with high soil microbial respiration per cm3 of soil. Laboratory experiments showed that the CO2 produced by microbial respiration can reduce microbial respiration but that CO2 produced by root respiration did not reduce root respiration. The results indicate that when soil ventilation is poor, microbial respiration can sufficiently increase soil CO2 concentration so as to reduce microbial respiration, which greatly increases the variability in the relationship between CO2 flow from soil and soil CO2 concentration.
See more in PubMed
Shimmel SM. Dark fixation of carbon dioxide in an agricultural soil. Soil Sci. 1987;144:20–23. doi: 10.1097/00010694-198707000-00004. DOI
Schimel DS. Terrestrial ecosystems and the carbon cycle. Glob. Chang. Biol. 1995;1:77–91. doi: 10.1111/j.1365-2486.1995.tb00008.x. PubMed DOI
Subke AJ, Bahn M. On the ‘temperature sensitivity’ of soil respiration: Can we use the immeasurable to predict the unknown? Soil Biol. Biochem. 2010;42:1653–1656. doi: 10.1016/j.soilbio.2010.05.026. PubMed DOI PMC
Janssens IA, et al. Productivity overshadows temperature in determining soil and ecosystem respiration across European forests. Glob. Chang. Biol. 2001;7:269–278. doi: 10.1046/j.1365-2486.2001.00412.x. DOI
Helingerová M, Frouz J, Šantrůčková H. Microbial activity in reclaimed and unreclaimed post-mining sites near Sokolov (Czech Republic) Ecol. Eng. 2010;36:768–776. doi: 10.1016/j.ecoleng.2010.01.007. DOI
Hanson PJ, Edwards NT, Garten CT, Andrews JA. Separating root and soil microbial contributions to soil respiration: A review of methods and observations. Biogeochemistry. 2000;48:115–146. doi: 10.1023/A:1006244819642. DOI
Fontaine S, Bardoux G, Aabbadie L, Mariotti A. Carbon input to soil may decrease soil carbon content. Ecol. Lett. 2004;7:314–320. doi: 10.1111/j.1461-0248.2004.00579.x. DOI
Davidson EA, Janssens IA. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature. 2006;440:165–173. doi: 10.1038/nature04514. PubMed DOI
Nay S, Mattson M, Bormann KG, Bernard T. Biases of chamber methods for measuring soil CO2 efflux demonstrated with a laboratory apparatus. Ecology. 1994;75:2460–2463. doi: 10.2307/1940900. DOI
Pumpanen J, Ilvesniemi H, Perämäki M, Hari P. Seasonal patterns of soil CO2 efflux and soil air CO2 concentration in a Scots pine forest: comparison of two chamber techniques. Glob. Chang. Biol. 2003;9:371–382. doi: 10.1046/j.1365-2486.2003.00588.x. DOI
De Jong E, Schappert HJV. Calculation of soil respiration and activity from CO2 profiles in the soil. Soil Sci. 1972;113:328–333. doi: 10.1097/00010694-197205000-00006. DOI
Dörr H, Mönnich KO. 222Rn flux and soil air concentration profiles in west-Germany. Soil 222Rn as tracer for gas transport in the unsaturated soil zone. Tellus B Chem. Phys. Meteorol. 1990;42:20–28. doi: 10.3402/tellusb.v42i1.15188. DOI
Davidson EA, Trumbore SE. Gas diffusivity and production of CO2 in deep soils of the eastern Amazon. Tellus B Chem. Phys. Meteorol. 1995;47:550–565. doi: 10.3402/tellusb.v47i5.16071. DOI
Risk D, Kellman L, Beltrami H. Carbon dioxide in soil profiles: Production and temperature dependence. Geophys. Res. Lett. 2002;29:1087. doi: 10.1029/2001GL014002. DOI
Hirsch AI, Trumbore SE, Goulden ML. Direct measurement of the deep soil respiration accompanying seasonal thawing of a boreal forest soil. J. Geophys. Res. 2003;108:8221.
Maier M, Schack-Kirchner H. Using the gradient method to determine soil gas flux: A review. Agric. For. Meteorol. 2014;78–95:192–193.
Ma J, Wang ZY, Stevenson BA, Zheng XJ, Li Y. An inorganic CO2 diffusion and dissolution process explains negative CO2 fluxes in saline/alkaline soils. Sci. Rep. 2013;3:2025. doi: 10.1038/srep02025. PubMed DOI PMC
Šantrůčková H, et al. Heterotrophic fixation of CO2 in soil. Microb. Ecol. 2005;49:1–8. doi: 10.1007/s00248-003-1052-5. PubMed DOI
Šantrůčková H, Šimek M. Effect of soil CO2 concentration on microbial biomass. Biol. Fert. Soils. 1997;25:269–273. doi: 10.1007/s003740050313. DOI
Bujalský L, Kaneda S, Dvorščík P, Frouz J. In situ soil respiration at reclaimed and unreclaimed post-mining sites: responses to temperature and reclamation treatment. Ecol. Eng. 2014;68:53–59. doi: 10.1016/j.ecoleng.2014.03.048. DOI
Frouz J, et al. Interactions between soil development, vegetation and soil fauna during spontaneous succession in post mining sites. Eur. J. Soil Biol. 2008;44:109–121. doi: 10.1016/j.ejsobi.2007.09.002. DOI
Šourková M, Frouz J, Šantrůčková H. Accumulation of carbon, nitrogen and phosphorus during soil formation on alder spoil heaps after brown-coal mining, near Sokolov (Czech Republic) Geoderma. 2005;124:203–214. doi: 10.1016/j.geoderma.2004.05.001. DOI
Frouz J, et al. Development of canopy cover and woody vegetation biomass on reclaimed and unreclaimed post-mining sites. Ecol. Eng. 2015;84:233–239. doi: 10.1016/j.ecoleng.2015.09.027. DOI
Frouz J, et al. Soil biota and upper soil layers development in two contrasting post-mining chronosequences. Ecol. Eng. 2001;17:275–284. doi: 10.1016/S0925-8574(00)00144-0. DOI
Frouz J, Kalčík J, Velichová V. Factors causing spatial heterogeneity in soil properties, plant cover, and soil fauna in a non-reclaimed post-mining site. Ecol. Eng. 2010;37:1910–1913. doi: 10.1016/j.ecoleng.2011.06.039. DOI
Vance ED, Brookes PC, Jenkinson DS. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 1987;19:703–707. doi: 10.1016/0038-0717(87)90052-6. DOI
Burton AJ, Pregitzer KS. Measurement carbon dioxide concentration does not affect root respiration of nine tree species in the field. Tree Physiol. 2002;22:67–72. doi: 10.1093/treephys/22.1.67. PubMed DOI
Maček I, Pfanz H, Francetič V, Batič F, Vodnik D. Root respiration response to high CO2 concentrations in plants from natural CO2 springs. Environ. Exp. Bot. 2005;54:90–99. doi: 10.1016/j.envexpbot.2004.06.003. DOI
Marshall QIJ, Mattson JD. High soil carbon dioxide concentrations inhibit root respiration of Douglas fir. New Phytol. 1994;128:435–442. doi: 10.1111/j.1469-8137.1994.tb02989.x. PubMed DOI
Jones RP, Greenfield PF. Effect of carbon dioxide on yeast growth and fermentation. Enzym. Microb. Technol. 1982;4:210–223. doi: 10.1016/0141-0229(82)90034-5. DOI
MacFadyen A. Inhibitory effects of carbon dioxide on microbial activity in soil. Pedobiologia. 1973;13:140–149.
Šantrůčková H, Straškraba M. On the relationship between specific respiration activity and microbial biomass in soils. Soil Biol. Biochem. 1991;23:525–532. doi: 10.1016/0038-0717(91)90109-W. DOI
Tjeerd J, David B, Bryla R. On the assessment of root and soil respiration for soils of different textures: interactions with soil moisture contents and soil CO2 concentrations. Plant Soil. 2000;227:215–221. doi: 10.1023/A:1026502414977. DOI
Hashimoto S, Komatsu H. Relationships between soil CO2 concentration and CO2 production, temperature, water content, and gas diffusivity: implications for field studies through sensitivity analyses. J. For. Res. 2006;11:41–50. doi: 10.1007/s10310-005-0185-4. DOI
Rey A. Mind the gap: non-biological processes contributing to soil CO2 efflux. Glob. Chang. Biol. 2015;21:1752–1761. doi: 10.1111/gcb.12821. PubMed DOI
Frouz J, et al. Rough wave-like heaped overburden promotes establishment of woody vegetation while leveling promotes grasses during unassisted post mining site development. J. Environ. Manage. 2018;205:50–58. doi: 10.1016/j.jenvman.2017.09.065. PubMed DOI
Kuráž V, et al. Changes in some physical properties of soils in the chronosequence of self-overgrown dumps of the Sokolov quarry-dump complex, Czechia. Eurasian Soil Sci. 2012;45:266–272. doi: 10.1134/S1064229312030076. DOI
Cejpek J, Kuráž V, Frouz J. Hydrological properties of soils in reclaimed and unreclaimed sites after brown-coal mining. PJoES. 2013;22:645–652.
Takashi H, Honghyun K, Yumiko T. Long-term half-hourly measurement of soil CO2 concentration and soil respiration in a temperate deciduous forest. J. Geophys. Res. Atmos. 2003;108:4631–4643. doi: 10.1029/2003JD003766. DOI
Hall SJ, McDowell WH, Silver WL. When Wet Gets Wetter: Decoupling of Moisture, RedoxBiogeochemistry, and Greenhouse Gas Fluxes in a Humid Tropical Forest Soil. Ecosystems. 2013;16:576–589. doi: 10.1007/s10021-012-9631-2. DOI
Klute, A. Methods ofSoil Analysis (ed Klute, A.) 383–409 (American Society of Agriculture, 1986).
Bouma TJ, Nielsen KL, Eissenstat DM, Lynch JP. Soil CO2 concentration does not affect growth or root respiration in bean or citrus plant. Plant Cell Environ. 1997;20:1495–1505. doi: 10.1046/j.1365-3040.1997.d01-52.x. DOI
Dryad
10.5061/dryad.41sk145